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Abstract

In this paper, we explore the laws of cubic and quar-
tic reciprocity. The theory is developed using a classical
approach with Gauss and Jacobi sums. The properties
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Strong Reciprocity law.
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1 The Gaussian and Eisenstein integers

We recall that the Gaussian integers are given by Z[i] = {a + bi | a, b ∈ Z} and that the
Eisenstein integers are Z[ω] = {a+ bω | a, b ∈ Z} where ω = e2πi/3. They are the number
rings belonging to the quadratic fields Q(i) and Q(ω), respectively, see for example chapter
2 in [5]. The norms are given by N(a + bi) = a2 + b2 and N(a + bω) = a2 − ab + b2. An
element in a number ring is a unit if and only if it has norm 1, from which it follows that
Z[i]× = {±1,±i}. For the Eisenstein integers, we have Z[ω]× = {±1,±ω,±ω2}. To see
this, simply reformulate the equation a2 − ab+ b2 = 1 as (2a− b)2 + 3b2 = 4 and consider
cases.

Unlike most number rings, Z[i] and Z[ω] are Euclidean with respect to their norms.
By general theory, they are both PIDs and UFDs. In particular, the notions of prime
and irreducible coincide. A classification of the irreducibles are given in the following
propositions:

Proposition 1.1. Up to associates, the irreducible elements in Z[i] are:

(i) 1 + i.

(ii) Rational primes q ≡ 3 (mod 4).

(iii) a+ bi, a− bi with a2 + b2 = p a prime p ≡ 1 (mod 4).

Proposition 1.2. Up to associates, the irreducible elements in Z[ω] are:

(i) 1− ω

(ii) Rational primes q ≡ 2 (mod 3).

(iii) a+ bω, a+ bω2 with a2 − ab+ b2 = p a prime p ≡ 1 (mod 3)

These should be well known, otherwise, consult for example [8] and [4]. Lastly, we
consider the residue class rings of these number rings.

Proposition 1.3. Let π ∈ Z[i] be a non-zero prime. Z[i]/πZ[i] is a finite field with Nπ
elements.

Proof. Z[i]/πZ[i] is a field since πZ[i] is a non-zero prime ideal hence a maximal ideal since
Z[i] is a PID. We now note that all elements in Z[i]/πZ[i] has a representative with norm
strictly less than Nπ. This follows from Euclidean division. The case π = 1 + i is easy,
since the residue classes of ±1,±i are all equal, so the quotient has two elements.

Now assume that π = q with q ≡ 3 (mod 4) a rational prime. We claim that a
complete residue system is given by R = {a + bi | 0 ≤ a, b < q}. Then the quotient will
have q2 = Nπ elements as desired. Let a + bi ∈ Z[i]. Write a = tq + s and b = t′q + s′

for t, t′, s, s′ ∈ Z with 0 ≤ s, s′ < q. We have a + bi ≡ s + s′i (mod q), so a + bi has a
representative in R. Assume that a + bi ≡ a′ + b′i (mod q) for two representations in R.
Then (a− a′)/q + ((b− b′)/q)i ∈ Z[i] implying that (a− a′)/q and (b− b′)/q are integers.
Since 0 ≤ a, a′, b, b′ < q, the only possibility is a = a′ and b = b′.

Now let Nπ = p ≡ 1 (mod 4). We claim that {0, 1, ..., p − 1} is a complete set of
representatives. Then Z[i]/πZ[i] will have p elements. Write π = a + bi and let α =
c+ di ∈ Z[i] be arbitrary. Clearly, p - b so there is an integer k such that kb ≡ d (mod p).

1



Thus, α − kπ ≡ c − ka (mod p), implying α ≡ c − ka (mod π). This shows that every
element in Z[i] is congruent to a rational integer modulo π. If α ≡ m (mod π), write
m = np+ r with 0 ≤ r < p, then α ≡ r (mod π), so α is congruent to one of 0, 1, ..., p− 1
modulo π. Let m ≡ m′ (mod π) with 0 ≤ m,m′ < p. Then m − m′ = πβ for some
β ∈ Z[i] and (m−m′)2 = pNβ so that p divides m−m′. Hence, m = m′, and the proof
is complete. �

A completely analogous proof goes through in the case for Z[ω], so if π ∈ Z[ω] is a prime,
Z[ω]/πZ[ω] is a finite field with Nπ elements as well. In both cases, a straightforward
application of the Chinese remainder theorem shows that Z[i]/αZ[i] and Z[ω]/αZ[ω] are
rings with Nα elements for any non-zero α in the respective ring. From proposition 1.3,
we deduce:

Corollary 1.4 (Fermat’s little theorem). Let π be irreducible in Z[i] (or Z[ω]) and
α ∈ Z[i] (or α ∈ Z[ω]), then:

αNπ−1 ≡ 1 (mod π)

During the project, we present some algorithms to compute certain functions. These
functions (and many others) are all implemented in C++. All my code concerning the
Eisenstein integers can be found here1. The analogous functions for the Gaussian integers
are all found here2.

2 Gauss and Jacobi sums

We first define the notion of a multiplicative character. Let p be a prime and let Fp = Z/pZ
denote the finite field with p elements.

Definition 2.1. A multiplicative character on Fp is a homomorphism χ : F×p → C×.
Define the trivial multiplicative character ε on Fp to be ε(a) = 1 for all a ∈ F×p .

From now on we omit the term ”multiplicative” and simply refer to χ in the definition
as a character. We extend characters to all of Fp by letting χ(0) = 0 for χ 6= ε and
ε(0) = 1. A well known example of a character from elementary number theory is the
Legendre symbol. Let us establish some fundamental results for characters.

Proposition 2.2. Let χ be a character and a ∈ F×p . We have

(i) χ(1) = 1.

(ii) χ(a) is a (p− 1)st root of unity.

(iii) χ(a−1) = χ(a)−1 = χ(a).

(iv) If χ 6= ε
p−1∑
n=0

χ(n) = 0

and the sum is p if χ = ε.

1https://github.com/RasmusFL/EisensteinIntegers
2https://github.com/RasmusFL/GaussianIntegers
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Proof. (i) follows from χ(1) = χ(1 · 1) = χ(1)χ(1). (ii) is just Fermat’s little theorem.
ap−1 = 1 gives χ(1) = χ(ap−1) = χ(a)p−1. To prove (iii), simply note that 1 = χ(1) =

χ(aa−1) = χ(a)χ(a−1). χ(a)−1 = χ(a) follows from (ii). If χ = ε, clearly
∑p−1
n=0 χ(n) = p.

Otherwise, pick a ∈ F×p such that χ(a) 6= 1. Then:

χ(a)

p−1∑
n=0

χ(n) =

p−1∑
n=0

χ(an) =

p−1∑
n=0

χ(n)

since n 7→ an is a bijection from Fp to Fp. As χ(a) 6= 1, the sum must be zero. �

Definition 2.3. For characters χ, λ, let χλ be the character defined by χλ(a) = χ(a)λ(a).
Define χ−1 to be the map χ−1(a) = χ(a−1).

Clearly, this makes the set of characters on Fp a group with identity ε. It is in fact a
cyclic group of order p−1 generated by the character λ acting on an element a = gk ∈ F×p
by λ(a) = e2πi(k/(p−1)) where g is a generator for F×p . See [4, p. 89] for a proof. We are
now ready to define the notion of a Gauss sum.

Definition 2.4. Let χ be a character on Fp and a ∈ Fp. Define the Gauss sum for χ to

be ga(χ) =
∑p−1
n=0 χ(n)ζan where ζ = e2πi/p.

The following proposition says that the value of ga(χ) for a 6= 0 only depends on g1(χ)
which we will denote by g(χ) from now on.

Proposition 2.5.

ga(χ) =


χ(a−1)g(χ), if χ 6= ε and a 6= 0

0, if χ = ε and a 6= 0 or χ 6= ε and a = 0

p, if χ = ε and a = 0

Proof. Assume χ 6= ε and a 6= 0. Again, since n 7→ an is a bijection:

χ(a)ga(χ) = χ(a)

p−1∑
n=0

χ(n)ζan =

p−1∑
n=0

χ(an)ζan = g(χ)

This proves the first case. If a 6= 0, we may use the formula for a geometric sum as ζa 6= 1:

ga(ε) =

p−1∑
n=0

ε(n)ζan =

p−1∑
n=0

ζan =
ζap − 1

ζa − 1
= 0

Lastly, g0(χ) =
∑p−1
n=0 χ(n)ζ0n =

∑p−1
n=0 χ(n) and this sum is zero if χ 6= ε and p otherwise

by proposition 2.2. �

It remains to determine g(χ). The following result determines the absolute value. We

start by noting the simple fact that
∑p−1
k=0 ζ

k(n−m) = p if p | (n − m) and the sum is 0
otherwise.

Proposition 2.6. For χ 6= ε, we have |g(χ)| = √p.
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Proof. To prove the proposition, we compute the sum
∑p−1
a=0 ga(χ)ga(χ) in two different

ways. Using proposition 2.2, we get for a 6= 0:

ga(χ)ga(χ) = χ(a−1)g(χ)χ(a−1)g(χ) = χ(a−1)g(χ)χ(a)g(χ) = |g(χ)|2

There are p− 1 non-zero terms in the sum, so
∑p−1
a=0 ga(χ)ga(χ) = (p− 1)|g(χ)|2. On the

other hand, by spelling out definitions:

ga(χ)ga(χ) =

p−1∑
n=0

p−1∑
m=0

χ(n)χ(m)ζan−am

Define δnm by letting δnm = 1 when p | (n − m) and δnm = 0 otherwise. Using the
observation before the theorem:

p−1∑
a=0

ga(χ)ga(χ) =

p−1∑
n=0

p−1∑
m=0

χ(n)χ(m)δnmp = (p− 1)p

Cancelling p − 1 from both sides of the equation (p − 1)|g(χ)|2 = (p − 1)p completes the
proof. �

Corollary 2.7. For χ 6= ε, we have g(χ)g(χ) = χ(−1)p.

Proof. The proof follows by computing

g(χ) =

p−1∑
n=0

χ(n)ζ−n = χ(−1)

p−1∑
n=0

χ(−n)ζ−n = χ(−1)g(χ)

χ(−1) = χ(−1) follows from χ(−1) = ±1. Multiplying both sides by χ(−1)g(χ) and using
the proposition completes the proof. �

This establishes the necessary results for Gauss sums. In fact, the above corollary is
used to give a classical proof of the quadratic reciprocity law. We now introduce Jacobi
sums.

Definition 2.8. For two characters χ and λ of Fp, the Jacobi sum of χ and λ is defined
as J(χ, λ) =

∑
n+m=1 χ(n)λ(m).

Proposition 2.9. Let χ, λ 6= ε be characters. We have:

(i) J(ε, ε) = p.

(ii) J(χ, ε) = 0.

(iii) J(χ, χ−1) = −χ(−1).

(iv) If χλ 6= ε, J(χ, λ) = g(χ)g(λ)
g(χλ) .

(v) If χλ 6= ε, |J(χ, λ)| = √p.
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Proof. (i) and (ii) follow by observing that the Jacobi sum becomes a Gauss sum in these
cases and applying proposition 2.2. We now show (iii):

J(χ, χ−1) =
∑

n+m=1

χ(n)χ−1(m) =
∑
n 6=1

χ(n(1− n)−1)

If we denote k = n/(1 − n), we can solve for n by n = k/(1 + k). So as n runs through
Fp \{1}, k runs through Fp \{−1}. Thus, the sum is equal to −χ(−1). It remains to show
(iv). We first compute:

g(χ)g(λ) =

(
p−1∑
n=0

χ(n)ζn

)(
p−1∑
n=0

λ(m)ζm

)
=
∑
n,m

χ(n)λ(m)ζn+m

=

p−1∑
k=0

( ∑
n+m=k

χ(n)λ(m)

)
ζk (1)

For k = 0, we get
∑
n+m=0 χ(n)λ(m) =

∑p−1
n=0 χ(n)λ(−n) = λ(−1)

∑p−1
n=0 χλ(n) = 0 by

our assumption that χλ 6= ε. When k 6= 0, we may find n′ and m′ such that n = kn′ and
m = km′. Thus, n+m = k gives n′ +m′ = 1. We obtain:∑

n+m=k

χ(n)λ(m) =
∑

n′+m′=1

χ(kn′)λ(km′) = χλ(k)J(χ, λ)

We substitute in (1) and get the desired expression:

g(χ)g(λ) =

p−1∑
k=0

χλ(k)J(χ, λ)ζk = J(χ, λ)g(χλ)

This proves (iv). (v) follows immediately from (iv) and proposition 2.6. �

The final relation between the Gauss and Jacobi symbol that we need is given in the
following proposition:

Proposition 2.10. Assume that χ is a character of order n > 2 and p ≡ 1 (mod n),
then:

g(χ)n = χ(−1)pJ(χ, χ)J(χ, χ2) · · · J(χ, χn−2)

Proof. By (iv) of proposition 2.9, g(χ)2 = J(χ, χ)g(χ2), g(χ)3 = J(χ, χ)J(χ, χ2)g(χ3) and
so on. Continuing up to n− 1 gives:

g(χ)n−1 = J(χ, χ)J(χ, χ2) · · · J(χ, χn−2)g(χn−1)

The result follows by noting χn−1 = χ−1 = χ, multiplying both sides by g(χ) and using
corollary 2.7. �

In the next two sections, we will work with many congruences, and the following lemma
will be indispensable in that regard:
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Lemma 2.11. Let n,m ∈ Z with m > 1, n = s1 · · · st, n ≡ 1 (mod m) and si ≡ 1 (mod m)
for i = 1, ..., t. We then have:

n− 1

m
≡

t∑
i=1

si − 1

m
(mod m)

Proof. We prove the result by induction on t. For t = 1, there is nothing to show, so
assume t > 1. We assume that the result holds for k = s1 · · · st−1. Note that kst ≡ 1
(mod m). We have

k − 1

m
+
st − 1

m
≡

t∑
i=1

si − 1

m
(mod m)

by the induction hypothesis. Thus, it suffices to show (k−1)/m+(st−1)/m ≡ (kst−1)/m
(mod m) which follows by observing that kst− 1 = (k− 1)(st− 1) + (k− 1) + (st− 1) and
dividing by m. �

3 Cubic reciprocity

3.1 The cubic residue symbol and basic properties

In this section, let π ∈ Z[ω] be a prime. Our first goal is to define the cubic residue charac-
ter. To do so, we first note that if Nπ 6= 3, the residue classes of 1, ω and ω2 are distinct.
Assume 1 ≡ ω (mod π). Then π | (1− ω), so Nπ = 3. Similarly for 1 ≡ ω2 (mod π) and
ω ≡ ω2 (mod π). Also note that if Nπ 6= 3, then Nπ ≡ 1 (mod 3). In general, Nα is
divisible by 3 precisely if 1− ω is a factor of α.

Let α ∈ Z[ω] and π - α. By corollary 1.4, π divides αNπ−1 − 1, and:

αNπ−1 − 1 = (α
Nπ−1

3 − 1)(α
Nπ−1

3 − ω)(α
Nπ−1

3 − ω2)

Since π is prime, it must divide one of the three factors, and since Nπ 6= 3, it will divide
exactly one of them. This proves that α(Nπ−1)/3 ≡ ωm (mod π) for m equal to exactly
one of 0, 1, 2. These observations allow us to make the definition:

Definition 3.1. For Nπ 6= 3, the cubic residue character of α modulo π is:

(α
π

)
3

=

{
0, if π | α
ωm, if α(Nπ−1)/3 ≡ ωm (mod π)

Let us derive some simple consequences of this definition:

Proposition 3.2. For α, β ∈ Z[ω]:

(i) (α/π)3 = 1 if and only if x3 ≡ α (mod π) is solvable.

(ii) (αβ/π)3 = (α/π)3(β/π)3.

(iii) (α/π)3 = (β/π)3 if α ≡ β (mod π).

6



Proof. To prove (i), recall that (Z[ω]/πZ[ω])× is cyclic since Z[ω]/πZ[ω] is a finite field.
Let γ be a generator. Write x = γa and α = γb, then x3 ≡ α (mod π) is equivalent to
γ3a ≡ γb (mod π). This equation being solvable is equivalent to 3a ≡ b (mod Nπ − 1)
being solvable. From elementary number theory, this equation is solvable if and only if

gcd(3, Nπ − 1) = 3 | b, i.e. α
Nπ−1

3 ≡ 1 (mod π). (ii) follows from a simple computation:(
αβ

π

)
3

≡ (αβ)
Nπ−1

3 ≡ α
Nπ−1

3 β
Nπ−1

3 ≡
(α
π

)
3

(
β

π

)
3

(mod π)

(iii) is proved in the same fashion:(α
π

)
3
≡ α

Nπ−1
3 ≡ β

Nπ−1
3 ≡

(
β

π

)
3

(mod π)

�

Note that this proposition shows that (−/π)3 is a cubic character. This allows us to
use all the results for Gauss and Jacobi sums on (−/π)3 whenever Nπ = p, a prime.
From now on, we write χπ(α) = (α/π)3 for convenience. The following proposition will
be useful:

Proposition 3.3. For α ∈ Z[ω], we have χπ(α) = χπ(α)2 = χπ(α2) and χπ(α) = χπ(α).

Proof. χπ(α) ∈ {1, ω, ω2} and all of these are squares of their conjugate. This proves the
first claim. For the second, note that

α
Nπ−1

3 ≡ χπ(α) (mod π), hence α
Nπ−1

3 ≡ χπ(α) (mod π)

Nπ = Nπ, so χπ(α) ≡ χπ(α) (mod π) which completes the proof. �

In order to state the cubic reciprocity law unambiguously i.e. independently of asso-
ciates (note the the residue symbol is unchanged if we multiply the ”denominator” by a
unit), we need the notion of a primary element.

Definition 3.4. λ ∈ Z[ω] is called primary if λ ≡ 2 (mod 3).

λ = a + bω ∈ Z[ω] with Nλ 6= 3 is primary if and only if a ≡ 2 (mod 3) and
b ≡ 0 (mod 3). The notion of being primary is only useful if exactly one of the six
associates of λ is primary. This turns out to be the case:

Proposition 3.5. Let α = a + bω ∈ Z[ω] and assume Nα 6= 3. Exactly one of the
associates of α is primary.

Proof. Let us write down all the associates explicitly:

a+ bω, −b+ (a− b)ω, (b− a)− aω, −a− bω, b+ (b− a)ω, (a− b) + aω

We first show uniqueness. If a+bω is primary, a ≡ 2 (mod 3) and b ≡ 0 (mod 3), from which
it easily follows by considering congruence classes that none of the associates are primary.
The proof of existence is a straightforward check. If a ≡ 0 (mod 3) and b ≡ 1 (mod 3),
the primary associate is (a− b) + aω. For a ≡ 0 (mod 3) and b ≡ 2 (mod 3), the primary
associate is (b− a)− aω. We let the reader check the remaining four possible cases. Note
that we cannot have the three cases with a+ b ≡ 0 (mod 3), since the norm is divisible by
3 in those cases. �
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The following technical lemma shall be useful:

Lemma 3.6. Any primary element λ in Z[ω] can be written as a product λ = ±λ1 · · ·λt
with each λi a primary prime.

Proof. By unique factorization, factor λ = uπ1 · · ·πmq1 · · · qn with u ∈ Z[ω]× and Nπi ≡ 1
(mod 3), qi ≡ 2 (mod 3). For each i, let π′i = uiπi be the unique primary associate of
πi and v = u ·

∏
i ui. Then λ = vπ′1 · · ·π′mq1 · · · qn is a factorization into primary primes.

Reducing modulo 3, we obtain 2 ≡ v2m+n (mod 3) implying v = ±1 since a power of 2 is
either 1 or -1 modulo 3. �

We are now ready to generalize the cubic character.

Definition 3.7. Let α ∈ Z[ω] be a nonunit such that 1 − ω - α and let β ∈ Z[ω]. Write
α =

∏
i πi with all πi irreducible. We define:

χα(β) =
∏
i

χπi(β)

Before stating the main theorem, we have the following properties of the generalized
cubic residue symbol:

Proposition 3.8. Let α, β, λ, ρ ∈ Z[ω] with 1− ω - λ, ρ.

(i) χλ(α) 6= 0 if and only if (α, λ) = 1.

(ii) χλ(αβ) = χλ(α)χλ(β).

(iii) χλ(α) = χλ(β) if α ≡ β (mod λ).

(iv) χλρ(α) = χλ(α)χρ(α).

(v) χλ(−1) = 1.

(vi) χλ(α) = χλ(α)2 = χλ(α2).

(vii) χλ(α) = χλ(α).

(viii) Let a ∈ Z with a ≡ 2 (mod 3). Then χa(α) = χa(α2) and χa(n) = 1 if (a, n) = 1
and n ∈ Z.

Proof. (i) - (iv) follow straight from the definition. −1 = (−1)3 which proves (v). To show
(vi) and (vii), factor λ and use the definition along with proposition 3.3. (viii) is proved
as follows. χa(α) = χa(α) = χa(α) = χa(α2). Also, χa(n) = χa(n) = χa(n)2, which gives
χa(n) = 1. �

This is a proper time for an example. 1 + 6ω is a prime since N(1 + 6ω) = 31 is a
prime. Consider 8− 11ω. We wish to determine whether x3 ≡ 8− 11ω (mod 1 + 6ω) has
a solution. We compute:(

8− 11ω

1 + 6ω

)
3

≡ (8− 11ω)
31−1

3 ≡ (8− 11ω)10 (mod 1 + 6ω)
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The remaining computation is easily done using modular exponentiation, and this gives
(8−11ω/1+6ω)3 = 1. We conclude that x3 ≡ 8−11ω (mod 1+6ω) is solvable. When π is
a prime, computing (·/π)3 using modular exponentiation is fairly efficient. The algorithm
works exactly as in the ordinary integers by using repeated squarings (see e.g. chapter
3 in [9]). If n ∈ N, we denote the binary representation of n by (bl−1, ..., b1, b0) so that
n = bl−12l−1 + ... + b12 + b0, and we define len(n) := l e.g. the bitlength of n. The
algorithm can thus be stated as follows:

Algorithm 1: Modular exponentiation in Z[ω]

1 Input: α, β ∈ Z[ω], n ∈ N
2 Output: αn (mod β)
3 r ← 1
4 let (bl−1, ..., b1, b0) be the binary representation of n
5 for i = l − 1 down to 0 do
6 r ← r2 (mod β)
7 if bi = 1 then
8 r ← r · α (mod β)

9 return r

The algorithm clearly outputs αn (mod β). The for-loop runs l times, so the algorithm
makes O(len(n)) multiplications in Z[ω].

3.2 The theorem of cubic reciprocity

We are now ready to state the main theorem in full generality:

Theorem 3.9 (Law of cubic reciprocity). Let λ and ρ be relatively prime primary elements
in Z[ω] with Nλ,Nρ 6= 3 and Nλ 6= Nρ. Then

χλ(ρ) = χρ(λ) (1)

For λ of the form λ = 3m − 1 or λ = 3m − 1 + 3nω for integers m and n, we have the
supplementary law:

χλ(1− ω) = ω2m (2)

And for the units, we have:

χλ(ω) = ω
Nλ−1

3 =


1, Nλ ≡ 1 (mod 9)

ω, Nλ ≡ 4 (mod 9)

ω2, Nλ ≡ 7 (mod 9)

(3)

The strategy for proving this theorem is to first prove part (1) for two distinct primary
primes. The rest is a simple application of lemma 3.6. We then turn our attention to (2)
and (3).

Lemma 3.10. Let π ∈ Z[ω] be a prime with Nπ ≡ 1 (mod 3). We have:

(i) g(χπ)3 = pJ(χπ, χπ).

(ii) J(χπ, χπ) = a+ bω ∈ Z[ω] with a ≡ −1 (mod 3) and b ≡ 0 (mod 3).
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Proof. (i) follows immediately from proposition 2.10 and by noting that χπ(−1) = χπ((−1)3) =
1. For (ii), note that J(χπ, χπ) is actually an element of Z[ω] since χπ is equal to a third
root of unity. Consider the congruence in the ring of algebraic integers:

g(χπ)3 =

(
p−1∑
n=0

χπ(n)ζn

)3

≡
p−1∑
n=0

χπ(n)3ζ3n (mod 3)

χπ(n)3 = 1 for n 6= 0 and χπ(0) = 0, so the above sum is equal to
∑
n 6=0 ζ

3n = −1. Thus

g(χπ)3 = pJ(χπ, χπ) ≡ a+ bω ≡ −1 (mod 3). Recall from the proof of corollary 2.7 that
g(χπ) = g(χπ) because χπ is a cubic character. Thus, a similar computation as before
gives g(χπ)3 ≡ pJ(χπ, χπ) ≡ a+bω ≡ −1 (mod 3). Subtracting gives b(ω−ω) ≡ 0 (mod 3)
so b
√
−3 ≡ 0 (mod 3). It follows that 3 | b and a ≡ −1 (mod 3). �

Lemma 3.11. Let π ∈ Z[ω] be a primary prime with Nπ ≡ 1 (mod 3). Then:

(i) J(χπ, χπ) = π.

(ii) g(χπ)3 = pπ.

Proof. Note that (ii) is a direct consequence of (i) and lemma 3.10. J(χπ, χπ)J(χπ, χπ) = p
by proposition 2.9 (v), so J(χπ, χπ) = π′, where π′ is a primary prime by (ii) of the previous
lemma. As ππ = p = π′π′, we must have π | π′ or π | π′. We show that the first possibility
is indeed the case. We have:

J(χπ, χπ) =

p−1∑
n=0

χπ(n)χπ(1− n) ≡
p−1∑
n=0

n(p−1)/3(1− n)(p−1)/3 (mod π)

We claim that 1k +2k + ...+(p−1)k ≡ 0 (mod p) when p−1 - k. Let g be a primitive root

of Z/pZ. Then the sum is equal to
∑p−1
i=0 g

ki = (gpk − 1)/(gk − 1) = 0 in Z/pZ. Now note
that x(p−1)/3(1 − x)(p−1)/3 has degree strictly less than p − 1. Using the previous claim
along with the binomial theorem shows that p divides J(χπ, χπ), in particular, π divides
J(χπ, χπ). We conclude that π | π′ whence π = π′. �

We are ready to prove the law of cubic reciprocity:

Proof of theorem 3.9. We first prove the theorem for two primary primes and generalize
afterwards. There are three cases to consider.
Case 1 : λ and ρ are rational primes congruent to 2 modulo 3. In this case, proposition
3.8 gives χλ(ρ) = 1 = χρ(λ).
Case 2 : λ = q is a rational prime congruent to 2 modulo 3 and ρ = π, a prime with
Nπ = p ≡ 1 (mod 3). We have

g(χπ)q
2−1 = g(χπ)3

q2−1
3 = (pπ)

q2−1
3 ≡ χq(pπ) (mod q)

by lemma 3.11, χq(p) = 1 so

g(χπ)q
2

≡ χq(π)g(χπ) (mod q)
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Since q2 ≡ 1 (mod 3), we may expand the left hand side as

g(χπ)q
2

≡

(
p−1∑
n=0

χπ(n)ζn

)q2
≡

p−1∑
n=0

χπ(n)q
2

ζq
2n ≡

p−1∑
n=0

χπ(n)ζq
2n ≡ gq2(χπ) (mod q)

Using proposition 2.5, we have gq2(χπ) = χπ(q−2)g(χπ) = χπ(q)g(χπ). Combining the
above equations, we get χπ(q)g(χπ) ≡ χq(π)g(χπ) (mod q). Multiplying both sides by

g(χπ) and cancelling out with p, we get χπ(q) ≡ χq(π) (mod q), so the symbols are equal.
Case 3: λ and ρ are primes with Nλ = p1, Nρ = p2 and p1, p2 ≡ 1 (mod 3). Starting
with the relations g(χλ)3 = p1λ and g(χρ)

3 = p2ρ as above, we get in a similar way:

χλ(p22) = χρ(p1λ), χρ(p
2
1) = χλ(p2ρ)

Note also that χλ(p22) = χλ(p2) by proposition 3.8. The rest is a calculation:

χλ(ρ)χρ(p1λ) = χλ(ρ)χλ(p22) = χλ(ρ)χλ(p2) = χλ(p2ρ)

= χρ(p
2
1) = χρ(p1λλ) = χρ(λ)χρ(p1λ)

We may cancel out the term χρ(p1λ) and obtain χλ(ρ) = χρ(λ).
The generalization to primary elements is easy. Assume λ and ρ are primary with primary
factorizations λ = ±λ1 · · ·λm and ρ = ±ρ1 · · · ρn. Since the cubic residue symbol is
unchanged when changing signs in both inputs, we can assume that both signs are positive.
By cubic reciprocity:

χρ(λ) =

m∏
i=1

n∏
j=1

χρj (λi) =

m∏
i=1

n∏
j=1

χλi(ρj) = χλ(ρ)

This proves the more general cubic reciprocity law (1). (3) is a simple consequence of
lemma 2.11 and the multiplicativity of the norm. It remains to show (2). We have two
cases. First, let λ = 3m − 1 be a rational integer. For this case, we follow the elegant
proof of K. S. Williams, see [10]:

χλ(1− ω) = χλ((1− ω)2)2 = χλ(−3ω)2 = χλ(−3)2χλ(ω)2 = χλ(ω)2

by proposition 3.8. We get

χλ(ω)2 = ω
2(Nλ−1)

3 = ω2(λ2−1)/3 = ω6m2−4m = ω2m

as desired. Now let λ = a + bω be a complex primary element with (a, b) = 1. Write
a = 3m− 1 and b = 3n. An easy computation gives (Nλ− 1)/3 ≡ −2m+ n (mod 3) and
(a2 − 1)/3 ≡ m (mod 3). We will show these claims:

(i) χλ(a) = ωm.

(ii) χλ(a+ b) = ω2nχλ(1− ω).

(iii) χa+b(λ) = χa+b(1− ω).

(iv) χa+b(λ) = ω2(m+n).

11



Together, these will imply the supplementary law. By cubic reciprocity (note that a is
primary) and proposition 3.8:

χλ(a) = χa(λ) = χa(bω) = χa(b)χa(ω) = χa(ω) = ω
Na−1

3 = ω
a2−1

3 = ωm

The second claim follows using a+ b = (a+ b)ωω2:

χλ(a+ b) = χλ(ω2(aω − a)) = χλ(−aω2(1− ω)) = χλ(a)χλ(ω)2χλ(1− ω)

= ωmω
2(Nλ−1)

3 χλ(1− ω) = ωm−4m+2nχλ(1− ω) = ω2nχλ(1− ω)

We now compute χa+b(λ) in two different ways as stated in the claims (note that a+ b is
primary):

χa+b(λ) = χa+b(a(1− ω)) = χa+b(a)χa+b(1− ω) = χa+b(1− ω)

The last equality follows from the computation χa+b(a) = χa(a + b) = χa(b) = 1 since
(a, b) = 1. The final claim is proved as follows:

χa+b(λ) = χa+b(1− ω) = χa+b((1− ω)2)2 = χa+b(−3ω2) = χa+b(ω
2)

= ω
2((a+b)2−1)

3 = ω2(m+n)

The supplementary law now follows from cancelling ω2n from both sides of the equation

ω2mω2n = χa+b(λ) = χλ(a+ b) = ω2nχλ(1− ω)

We now remove the restriction (a, b) = 1 and let λ = a + bω be any primary element.
Write λ = k(c + dω) with (c, d) = 1 and k ≡ 1 (mod 3). We see that c + dω is primary.
We write a = 3m− 1, k = 3n+ 1 and c = 3m′ − 1. By what we have showed:

χλ(1− ω) = χ−k(1− ω)χc+dω(1− ω) = ω2(m′−n)

So we are done if we have m′ − n ≡ m (mod 3). Substituting k = 3n+ 1 and c = 3m′ − 1
in the equation kc+ 1 = 3m and simplifying gives 3nm′ − n+m′ = m. Reducing modulo
3 finishes the proof. �

3.3 Computing the cubic residue symbol

The fully generalized theorem of cubic reciprocity allows us to write an efficient algorithm
for computing the cubic residue character. In the following, for α = a+ bω ∈ Z[ω], let α.a
denote the value for a in a given iteration and likewise with α.b. primary(α) denotes the
unique primary associate of α.
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Algorithm 2: Cubic residue symbol

1 Input: α, β ∈ Z[ω] with 1− ω - β
2 Output:

(
α
β

)
3

3 r ← 1
4 while (true) do
5 β ← primary(β)
6 α← α mod β
7

8 if α = 0 then
9 if Nβ 6= 1 then

10 return 0 // α and β have a common factor

11 else
12 return r

13

14 while 1− ω | α do
15 α← α/(1− ω)

16 r ← r · ω(2(β.a+1))/3 // supplementary law for 1− ω
17

18 u← α/primary(α)
19 α← primary(α) // supplementary law for the units

20 if u = ±ω then
21 if Nβ ≡ 4 mod 9 then
22 r ← r · ω
23 if Nβ ≡ 7 mod 9 then
24 r ← r · ω2

25 if u = ±ω2 then
26 if Nβ ≡ 4 mod 9 then
27 r ← r · ω2

28 if Nβ ≡ 7 mod 9 then
29 r ← r · ω

30 (α, β)← (β, α) // cubic reciprocity

Proof of correctness of algorithm 2. We apply the Euclidean algorithm on α with β in
each iteration. This, along with cubic reciprocity at the end, guarantees that the norm of
α becomes strictly smaller in each iteration of the outer while-loop. If α = 0 after reducing
modulo β, we have two cases. If β is not a unit, α and β share a non-trivial factor, and
the symbol is 0. Otherwise, we output the result r. In any case, we conclude that the
algorithm terminates.

Multiplication by a unit in the denominator does not change the symbol, so we may
replace β with its primary associate in the start of each iteration. The first while-loop
removes all factors of 1−ω and applies the supplementary law for 1−ω accordingly. This
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inner while-loop gives us the obvious loop-invariant that β is never divisible by 1 − ω at
the start of each iteration. Finally, we replace α by its primary associate and compute the
unit u such that α = u · primary(α). The final if-statements apply the supplementary law
for the units to adjust the result r for u. This process of replacing α by primary(α) allows
us to apply cubic reciprocity in the final line. Repeating all these steps until α becomes
divisible by β, the algorithm will correctly output the cubic residue symbol. �

The runtime of the above algorithm is clearly identical to the runtime of the Euclidean
algorithm in Z[ω]. This is noticeably faster than modular exponentiation. Furthermore,
the algorithm works for any β not divisible by 1− ω.

Lastly, we provide an example. Let α = −1165 + 2880ω and β = 134− 429ω. One can
check that 1−ω does not divide β, so the cubic residue symbol is well-defined. Let us use
cubic reciprocity to compute the symbol:

(
−1165 + 2880ω

134− 429ω

)
3

=

(
−227− 123ω

134− 429ω

)
3

=

(
227 + 123ω

134− 429ω

)
3

=

(
134− 429ω

227 + 123ω

)
3

=

(
−8 + 6ω

227 + 123ω

)
3

=

(
8− 6ω

227 + 123ω

)
3

=

(
227 + 123ω

8− 6ω

)
3

=

(
3− 5ω

8− 6ω

)
3

=

(
−ω

8− 6ω

)
3

(
8 + 3ω

8− 6ω

)
3

(N(8− 6ω) = 148 ≡ 4 (mod 9))

= ω

(
9ω

8− 6ω

)
3

= ω

(
ω

8− 6ω

)2

3

(
(1− ω)4

8− 6ω

)
3

= ωω2

(
1− ω
8− 6ω

)
3

= ω2 8+1
3 = ω6 = 1

The example illustrates an important point. The above symbol was equal to 1, but α
is not a cubic residue modulo β. This can only happen when β is not a prime, and in the
above case, the factorization of β is given by β = ω(1− 2ω)(5 + 2ω)(−51− 26ω). If α was
a cubic residue modulo β, α would also be a cubic residue modulo each prime factor of β.
In this case however, as the reader may verify,(

α

1− 2ω

)
3

=

(
α

5 + 2ω

)
3

=

(
α

−51− 26ω

)
3

= ω.

4 Quartic reciprocity

4.1 The quartic residue symbol and basic properties

We can define the quartic residue symbol in the same manner as for the cubic residue
symbol. Let π ∈ Z[i] be a prime. If π is not associated to 1 + i, i.e. Nπ 6= 2, the
residue classes of ±1,±i are easily seen to be distinct. Thus, they constitute all roots of
x4 − 1 (mod π). For any α ∈ Z[i] not divisible by π, α(Nπ−1)/4 is also a root of x4 − 1,
hence α(Nπ−1)/4 is equal to exactly one of ±1,±i. This makes the following well defined.
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Definition 4.1. For a prime π with Nπ 6= 2, the quartic (or biquadratic) residue symbol
of α modulo π is defined by:

(α
π

)
4

=

{
0, if π | α
im, if α(Nπ−1)/4 ≡ im (mod π)

As before, we write χπ instead of (·/π)4. Now assume β is a nonunit not divisible by 1 + i
and let the factorization be given by β = π1 · · ·πm. The general quartic residue symbol is
given by:

χβ(α) =

m∏
i=1

χπi(α)

We also need the notion of a primary element in order to state the fundamental theo-
rems.

Definition 4.2. A nonunit α ∈ Z[i] is primary if α ≡ 1 (mod 2 + 2i).

Lemma 4.3. A nonunit α = a + bi ∈ Z[i] is primary if and only if a ≡ 1 (mod 4) and
b ≡ 0 (mod 4) or a ≡ 3 (mod 4) and b ≡ 2 (mod 4).

Proof. The proof follows from the computation:

a− 1 + bi

2 + 2i
=

(2− 2i)((a− 1) + bi)

8
=

(a+ b− 1) + (b− a+ 1)i

4

We see that α is primary if and only if a+ b ≡ 1 (mod 4) and a− b ≡ 1 (mod 4). The rest
is checking possible cases. �

Lemma 4.4. Let α ∈ Z[i] be a nonunit not divisible by 1 + i. Exactly one of the asso-
ciates of α is primary. Furthermore, any primary element can be factored as a product
π1 · · ·πm(−q1) · · · (−qn) of primary primes with Nπi a rational prime congruent to 1 mod-
ulo 4 and qi ≡ 3 (mod 4).

Proof. A straightforward calculation similar to the proofs of proposition 3.5 and lemma
3.6. �

We list the following useful properties of the quartic residue symbol:

Proposition 4.5. Assume λ, ρ, π ∈ Z[i] is not divisible by 1 + i and let α ∈ Z[i] be
arbitrary.

(i) If π - α and π is prime then χπ(α) = 1 if and only if x4 ≡ α (mod π) has a solution
in Z[i].

(ii) χλ(αβ) = χλ(α)χλ(β).

(iii) χλ(α) = χλ(α).

(iv) If α ≡ β (mod λ) then χλ(α) = χλ(β).

(v) χρ(α) = χλ(α) if (λ) = (ρ).

Proof. The proof is exactly the same as for proposition 3.8. �
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Proposition 4.6. Let a ∈ Z.

(i) If q ≡ 3 (mod 4) is a prime, χq(a) = 1 if a is not divisible by q.

(ii) Let b ∈ Z with b 6= 0. Assume a is odd and not a unit. If (a, b) = 1, χa(b) = 1.

Proof. (i) follows from Fermat’s little theorem:

χq(a) ≡ a
q2−1

4 ≡ (aq−1)
q+1
4 ≡ 1 (mod q)

To show (ii), factor a into positive primes as a = p1 · · · pmq1 · · · qn with pi ≡ 1 (mod 4)
and qi ≡ 3 (mod 4) (we can assume a is positive by proposition 4.5). By (i), we have
χqi(b) = 1. Write pi = ππ with π a prime, then χpi(b) = χπ(b)χπ(b) = χπ(b)χπ(b) = 1,
which proves the claim. �

Let us now state the law of quartic reciprocity:

Theorem 4.7 (Law of quartic reciprocity). Let λ = a+ bi and ρ = c+ di be primary and
relatively prime. Then

χλ(ρ) = χρ(λ)(−1)
a−1
2

c−1
2 (4)

We have the supplementary laws:

χλ(i) = i
1−a
2 , χλ(1 + i) = i

a−b−b2−1
4 (5)

It will be useful to prove the supplementary law for i before embarking on the proof of
the general reciprocity law.

Proof of the supplementary law for i. Assume first that λ = a+ bi is a primary prime. If
a ≡ 1 (mod 4) and b ≡ 0 (mod 4), we get:

χλ(i) = i
a2+b2−1

4 = i
a2−1

4 = (ia+1)
a−1
4 = (i−2)

a−1
4 = i

1−a
2

In the other case, we have a ≡ 3 (mod 4) and b ≡ 2 (mod 4):

χλ(i) = i
a2+b2−1

4 = i
a2+4−1

4 = i · (ia−1)
a+1
4 = i · i

a+1
2 = i1+

a+1
2 = i2+

a−1
2 = i

1−a
2

The last equality follows, since 2+(a−1)/2 ≡ (1−a)/2 (mod 4) when a ≡ 3 (mod 4). Now
let λ be any primary element with factorization λ = λ1 · · ·λm, where each λi is primary.
Then Nλj ≡ 1 (mod 4) for all j and Nλ ≡ 1 (mod 4). Using the multiplicativity of the
norm and lemma 2.11, we get:

χλ(i) =

m∏
j=1

χλj (i) =

m∏
j=1

i
Nλj−1

4 = i
∑m
j=1

Nλj−1

4 = i
Nλ−1

4

The exact same computations as for the case with λ being prime gives the desired result.
�
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4.2 The theorem of quartic reciprocity

Proving the main theorem and the supplementary law for 1+i requires quite a bit of work.
We now let π be a primary prime with Nπ = p ≡ 1 (mod 4). As before, we can consider
Gauss and Jacobi sums over Z/pZ ∼= Z[i]/πZ[i]. To prove the reciprocity law, we need to
prove a few lemmas on the Jacobi sum J(χπ, χπ).

Lemma 4.8. We have:

(i) J(χπ, χπ) = χπ(−1)J(χπ, χ
2
π).

(ii) g(χπ)4 = pJ(χπ, χπ)2.

(iii) −χπ(−1)J(χπ, χπ) = π.

(iv) g(χπ)4 = π3π.

Proof. By proposition 2.6 and 2.10, we have

J(χπ, χπ)2 =
g(χπ)4

g(χ2
π)2

= χπ(−1)J(χπ, χπ)J(χπ, χ
2
π)

This proves (i). (ii) follows by multiplying with g(χ2
π)2 on both sides of the equation. (iii)

is proved in two steps. We first show that −χπ(−1)J(χπ, χπ) is primary. To finish the
proof, it will then suffice to show that the left hand side and right hand side are associates.
We write the Jacobi sum as

J(χπ, χπ) = 2

(p−1)/2∑
n=2

χπ(n)χπ(1− n) + χπ

(
p+ 1

2

)2

Recall that all units are congruent to 1 modulo 1 + i. Furthermore, p ≡ 1 (mod 2 + 2i).
We may also compute:

χπ

(
p+ 1

2

)2

= χπ(2−1)2 = χπ(2)−2 = χπ(−i(1 + i)2)2 = χπ(−i)2 = χπ(−1)

All in all, we get:

−χπ(−1)J(χπ, χπ) ≡ −χπ(−1)

(
2

(
p− 3

2

)
+ χπ(−1)

)
≡ 2χπ(−1)− 1 ≡ 1 (mod 2 + 2i)

So −χπ(−1)J(χπ, χπ) is a primary element. We have

J(χπ, χπ) =

p−1∑
n=0

χπ(n)χπ(1− n) ≡
p−1∑
n=0

n
p−1
4 (1− n)

p−1
4 (mod π)

As in the proof of lemma 3.11, it follows that π divides J(χπ, χπ). By proposition 2.9,
N(J(χπ, χπ)) = p, so J(χπ, χπ) is prime, which proves the claim. (iv) follows immediately
from (ii) and (iii).

�

We now prove a series of special cases of quartic reciprocity.
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Proposition 4.9. Lad q > 0 be a prime q ≡ 3 (mod 4), then χπ(−q) = χq(π).

Proof. We compute (using that q ≡ 3 (mod 4)):

g(χπ)q ≡
p−1∑
n=0

χπ(n)qζqn ≡
p−1∑
n=0

χπ(n)3ζqn ≡ gq(χπ) ≡ χπ(q−1)g(χπ) ≡ χπ(q)g(χπ) (mod q)

Which implies

(g(χπ)4)
q+1
4 = g(χπ)q+1 ≡ χπ(q)g(χπ)g(χπ) (mod q)

Now write π = a+ bi. By Fermat’s little theorem, πq = (a+ bi)q ≡ aq + (bi)q ≡ a− bi ≡
π (mod q). Using corollary 2.7 and lemma 4.8, we get

π
(q+3)(q+1)

4 ≡ χπ(−1)χπ(q)πq+1 (mod q)

In other words, π(q2−1)/4 ≡ χπ(−q) (mod q), i.e. χq(π) ≡ χπ(−q) (mod q). Both sides are
units, so the proof is complete. �

Proposition 4.10. Let q ≡ 1 (mod 4) be a prime, then χπ(q) = χq(π).

Proof. Since q ≡ 1 (mod 4)

g(χπ)q ≡
p−1∑
n=0

χπ(n)qζqn ≡
p−1∑
n=0

χπ(n)ζqn ≡ gq(χπ) ≡ χπ(q)g(χπ) (mod q)

So g(χπ)q+3 ≡ χπ(q)g(χπ)4, so by lemma 4.8:

(π3π)
q+3
4 ≡ χπ(q)π3π (mod q)

Since (q, π) = (q, π) = 1, we may divide by π3π on both sides and get:

(π3)
q−1
4 π

q−1
4 ≡ χπ(q) (mod q)

Write q = λλ with λ irreducible, then:

χλ(π3)χλ(π) ≡ χπ(q) (mod λ)

Both sides are units and λ 6= 1 + i, so we actually have χλ(π3)χλ(π) = χπ(q). We may
rewrite this equation as χλ(π)χλ(π) = χπ(q) i.e. χq(π) = χπ(q). We conclude that
χπ(q) = χq(π). �

Proposition 4.11. Let a ∈ Z and a ≡ 1 (mod 4) and λ be primary. Assume (λ, a) = 1,
then χa(λ) = χλ(a).

Proof. Factor a as a = ±p1 · · · ps · q1 · · · qt with pi, qi > 0, qi ≡ 3 (mod 4) and pi ≡ 1 (mod
4). As λ is primary, we may factor λ as λ = π1 · · ·πm(−q′1) · · · (−q′n) with πi, q

′
i primary

and irreducible with Nπi ≡ 1 (mod 4) and q′i ≡ 3 (mod 4). Assume first that the sign of

18



a is positive. This implies that t is even, hence
∏t
l=1 χπi(ql) =

∏t
l=1 χπi(−ql) for each i.

Using proposition 4.9, 4.10 and 4.6:

χλ(a) =

m∏
i=1

χπi(a)

n∏
j=1

χ−q′j (a) =

m∏
i=1

n∏
j=1

s∏
k=1

t∏
l=1

χπi(pk)χπi(ql)χ−q′j (pk)χ−q′j (ql)

=

m∏
i=1

n∏
j=1

s∏
k=1

t∏
l=1

χπi(pk)χπi(−ql)χ−q′j (pk)χ−q′j (ql)

=

m∏
i=1

n∏
j=1

s∏
k=1

t∏
l=1

χpk(πi)χql(πi)χpk(−q′j)χql(−q′j) = χa(λ)

In the rare case where the reader is interested in doing the same calculation for a < 0,
note that we get the factor χπi(−1)χ−q′j (−1) in the product in the first line above. Then

use that χ−q′j (−1) = 1 by the supplementary law for the units, and that χπi(−1)χπi(ql) =

χπi(−ql). �

Proposition 4.12. Let λ = a + bi and ρ = c + di be primary and relatively prime. If
(a, b) = (c, d) = 1 then

χλ(ρ) = χρ(λ)(−1)
a−1
2

c−1
2

Proof. We start with the observations that (a, λ) = (b, λ) = (c, ρ) = (d, ρ) = 1, cλ ≡ ac+bd
(mod ρ) and aρ ≡ ac+bd (mod λ). The latter relations imply (ac+bd, ρ) = (ac+bd, λ) = 1.
We thus have the equations:

χρ(c)χρ(λ) = χρ(ac+ bd), χλ(a)χλ(ρ) = χλ(ac+ bd)

Taking the conjugate of χλ(a)χλ(ρ) and multiplying by χρ(c)χρ(λ) gives:

χρ(c)χλ(a)χρ(λ)χλ(ρ) = χρλ(ac+ bd)

Where we used proposition 4.5. We get:

χρ(λ)χλ(ρ) = χρ(c)χλ(a)χρλ(ac+ bd) (6)

We now assume that neither a, c nor ac + bd is a unit. Let n be an odd integer and
define ε(n) = (−1)(n−1)/2. Clearly, ε(n)n ≡ 1 (mod 4) and ε(ac+ bd) = ε(a)ε(c) because
bd is divisible by 4. We write χα(x) = χα(ε(x))χα(ε(x)x) for α ∈ {ρ, λ, ρλ} and x ∈
{a, c, ac+ bd}. We also note that χα(ε(x)) = χα(ε(x)). These observations allow us to use
proposition 4.11 and obtain:

χρ(λ)χλ(ρ) = χc(ρ)χa(λ)χac+bd(ρλ)

The three terms on the right hand side can be computed using proposition 4.6:

χc(ρ) = χc(c− di) = χc(−di) = χc(i)

χa(λ) = χa(a+ bi) = χa(bi) = χa(i)

χac+bd(λρ) = χac+bd((ad− bc)i) = χac+bd(i)
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So by the supplementary law for i:

χρ(λ)χλ(ρ) = χ(ac+bd)ac(i) = i
(ac+bd)ac−1

2 = (−1)
(ac+bd)ac−1

4 = (−1)
a−1
2

c−1
2

The last equality can be seen as follows. a and c are odd in any case, so (ac)2 ≡ 1 (mod
8), so it suffices to show acbd ≡ (a − 1)(c − 1) (mod 8). If b ≡ 0 or d ≡ 0 (mod 4),
acbd ≡ 0 ≡ (a− 1)(c− 1) (mod 8) since a ≡ 1 or c ≡ 1 (mod 4) in these cases. One easily
checks that acbd ≡ 4 ≡ (a − 1)(c − 1) (mod 8) when b ≡ d ≡ 2 (mod 4) and a ≡ c ≡ 3
(mod 4). This finishes the proof when neither a, c nor ac+ bd is a unit.

We now consider the case where a, c or ac + bd is a unit. If a = ±1, c = ±1 or
ac + bd = ±1, we can skip the process of switching numerator and denominator in the
residue symbol in (6) and instead, if necessary, apply the supplementary law for i to obtain
the same congruence as before. �

We finally have all the necessary tools to give a proof of the quartic reciprocity law.

Proof of quartic reciprocity. Write the primary elements λ and ρ as λ = m(a + bi) and
ρ = n(c + di) so that m ≡ n ≡ 1 (mod 4) and (a, b) = (c, d) = 1. To see why this is
possible, simply factor out the greatest common divisor from λ and ρ. If this is congruent
to 3 modulo 4, multiply by −1 twice to get the desired form. Using all the previous
propositions, we get:

χλ(ρ) = χλ(n)χλ(c+ di) = χn(λ)χm(c+ di)χa+bi(c+ di)

= χn(λ)χc+di(m)χc+di(a+ bi)(−1)
a−1
2

c−1
2

= χρ(λ)(−1)
a−1
2

c−1
2

�

It remains to prove the supplementary law for 1 + i. An elementary proof is harder
than one would expect. First we shall prove a handful of useful lemmas.

Lemma 4.13. Let p be a prime p ≡ 1 (mod 4) and q a positive prime with q ≡ 3 (mod 4).
Then:

(i) χp(1 + i) = i
p−1
4 .

(ii) χq(1 + i) = i
−q−1

4 .

Proof. To prove (i), write p = ππ with π irreducible. We calculate:

χp(1 + i) = χπ(1 + i)χπ(1 + i) = χπ(1 + i)χπ(1− i) = χπ(1 + i)χπ(1− i)3

= χπ(i(1− i))χπ(1− i)3 = χπ(i)χπ(1− i)4 = χπ(i) = i
p−1
4

To prove (ii), we note that (1+i)q−1 ≡ −i (mod q). This is because (1+i)q ≡ 1+iq ≡ 1−i
(mod q), hence (1 + i)q−1 ≡ (1− i)/(1 + i) ≡ −i (mod q). The rest is an easy calculation:

χq(1 + i) ≡ (1 + i)
q2−1

4 ≡ ((1 + i)q−1)
q+1
4 ≡ (−i)

q+1
4 ≡ i

−q−1
4 (mod q)

�
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Corollary 4.14. The above results hold when p is replaced by any integer a ≡ 1 (mod 4)
and q is replaced by any positive integer a ≡ 3 (mod 4).

Proof. Let a ≡ 1 (mod 4) and factor a = p1 · · · pmq1 · · · qn with pi ≡ 1 (mod 4) and qi ≡ 3
(mod 4). We may assume a > 0 (a potential negative sign is killed since χ−pi(1 + i) =
χpi(1 + i)), so by lemma 2.11:

χa(1 + i) =

m∏
i=1

n∏
j=1

χpi(1 + i)χqj (1 + i) =

m∏
i=1

n∏
j=1

i
pi−1

4 i
−qj−1

4

= i
∑m
i=1

pi−1

4 +
∑n
j=1

−qj−1

4 = i
a−1
4

The last equality follows because n is even. When a ≡ 3 (mod 4), n will be odd (by
assumption, a is positive in this case), so we get χa(1 + i) = i(−a−1)/4. �

Lemma 4.15. Let π = a+ bi ∈ Z[i] be a primary prime. Then:

(i) χπ(a) = i
a−1
2 when π ≡ 1 (mod 4).

(ii) χπ(a) = −i−a−1
2 when π ≡ 3 + 2i (mod 4).

(iii) χπ(a)χπ(1 + i) = i
3(a+b−1)

4 .

Proof. We start by noting that irreducibility of π guarantees (a, b) = 1. Assume π ≡ 1
(mod 4) i.e. a ≡ 1 (mod 4) and b ≡ 0 (mod 4). By proposition 4.11, 4.6 and the
supplementary law:

χπ(a) = χa(π) = χa(bi) = χa(b)χa(i) = χa(i) = i
1−a
2 = i

a−1
2

The last equality follows from a ≡ 1 (mod 4) and 2 ≡ −2 (mod 4). This shows (i). To
show (ii), assume a ≡ 3 (mod 4) and b ≡ 2 (mod 4). We compute:

χπ(a) = χπ(−1)χπ(−a) = (−1)
a−1
2 χ−a(π) = −χ−a(bi)

= −χ−a(b)χ−a(i) = −χ−a(i) = −i
−a−1

2

Now let π be an arbitrary primary prime. Using the corollary above and the simple
observations a + b ≡ 1 (mod 4) and a + ai = a + b + iπ, (iii) follows from a somewhat
lengthy computation:

χπ(a)χπ(1 + i) = χπ(a(1 + i)) = χπ(a+ b+ iπ) = χπ(a+ b)

= χa+b(π) = χa+b(a− ai) = χa+b(a)χa+b(1− i)

= χa+b(1− i) = χa+b(1 + i) = χa+b(1 + i)3 = i
3(a+b−1)

4

The final equality is just the above corollary. �

If the reader has not yet been discouraged by these endless series of congruences, the
final proof on quartic reciprocity is in sight at long last.

21



Proof of the supplementary law for 1 + i. We first assume that π is a prime and use the
previous lemma. If π ≡ 1 (mod 4), we get:

χπ(1 + i) = i
3(a+b−1)

4 · (i
a−1
2 )−1 = i

3a+3b−3−2a−2
4 = i

a+3b−1
4 = i

a−b−b2−1
4

And if π ≡ 3 + 2i (mod 4), we compute:

χπ(1 + i) = i
3(a+b−1)

4 (−i
−a−1

2 )−1 = −i
3(a+b−1)

4 i
a+1
2 = −i

5a+3b−1
4

= i2+a+b+
a−b−1

4 = i−1+
a−b−1

4 = i
a−b−b2−1

4

Hence the formula holds in both cases. We now prove the law for general primary elements.
By a simple induction argument, it suffices to show that for primary π1 = a1 + b1i and
π2 = a2 + b2i, we have:

a1 − b1 − b21 − 1

4
+
a2 − b2 − b22 − 1

4
≡ a− b− b2 − 1

4
(mod 4)

where a = a1a2− b1b2 and b = a1b2 + a2b1. We multiply through by four and consider the
relation modulo 16. We have four cases, two of them being symmetric. If b1 ≡ 0 (mod 4)
and b2 ≡ 2 (mod 4), we have the following relations modulo 16:

a2b1 ≡ 3b1, a1b1 ≡ 2(a1 − 1) + b2, b1b2 ≡ 2b1, a1a2 ≡ 3(a1 − 1) + a2 (mod 16)

We now do the calculation (we let the reader fill in the details of calculating (2(a1 − 1) +
b2 + 3b1)2 with the proper reductions):

a− b− b2 − 1 ≡ 3(a1 − 1) + a2 − 2b1 − 2(a1 − 1)− b2 − 3b1 − (2(a1 − 1) + b2 + 3b1)2 − 1

≡ a1 − 1 + a2 − 5b1 − b2 − (4 + 8(a1 − 1) + 4b2 + b22 − 8a1 − 8 + 4)− 1

≡ a1 − b1 − b21 − 1 + a2 − b2 − b22 − 1 (mod 16)

Which is what we wanted to show. The case b1 ≡ 2 (mod 4) and b0 ≡ 0 (mod 4) follows
by symmetry, and the other cases follow a similar strategy. Determine relations for a1a2,
b1b2, a1b2 and a2b1 modulo 16 and simplify. �
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4.3 Computing the quartic residue symbol

We can now write an algorithm completely analogous to algorithm 2. Let <(α) and =(α)
denote the real and imaginary part of α in a given iteration, respectively:

Algorithm 3: Quartic residue symbol

1 Input: α, β ∈ Z[i] with 1 + i - β
2 Output:

(
α
β

)
4

3 r ← 1
4 while (true) do
5 β ← primary(β)
6 α← α mod β
7

8 if α = 0 then
9 if Nβ 6= 1 then

10 return 0 // α and β have a common factor

11 else
12 return r

13

14 while 1 + i | α do
15 α← α/(1 + i)

16 r ← r · i(<(β)−=(β)−=(β)2−1)/4 // supplementary law for 1 + i

17

18 u← α/primary(α)
19 α← primary(α) // supplementary law for the units

20 if u = −1 then
21 r ← r · i1−<(β)

22 if u = i then
23 r ← r · i(1−<(β))/2

24 if u = −i then
25 r ← r · i3(1−<(β))/2

26 if <(α) = 3 mod 4 and <(β) = 3 mod 4 then
27 r ← −r // quartic reciprocity

28 (α, β)← (β, α)
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Let us compute the symbol (−7/11 + 6i)4:(
−7

11 + 6i

)
4

=

(
11 + 6i

−7

)
4

=

(
−3− i
−7

)
4

=

(
1 + i

−7

)
4

·
(
−2 + i

−7

)
4

= i
−7−1

4 ·
(
−i
−7

)
4

(
−1− 2i

−7

)
4

= (−1) ·
(
−1

−7

)
4

·
(

i

−7

)
4

·
(
−7

−1− 2i

)
4

= (−1) · i1−(−7)i
1−(−7)

2 = (−1) ·
(
−i

−1− 2i

)
4

= (−1) ·
(
−1

−1− 2i

)
4

·
(

i

−1− 2i

)
4

= (−1) · i1−(−1)i
1−(−1)

2 = i

Since N(11 + 6i) = 157 is a prime, so is 11 + 6i, so we may conclude that −7 is a quartic
non-residue modulo 6 + 11i. This example is found in a table in Gauss’ second thesis on
biquadratic residues, see [2, p. 572]. In the table, it is listed as though (−7/11 + 6i)4 = 1.
However, it is likely that −7 was simply printed slightly off, since the correct placement is
just below its place in the document. So whether Gauss made a calculation error or the
error was made in print will likely remain a mystery. The astute reader may verify that
all 148 other entries in the table are correct.

5 Class field theory and the Hilbert symbol

In this section, we introduce some notions of class field theory, including the Hilbert sym-
bol, which we will utilize to give an alternate proof of cubic reciprocity. We follow the
exposition in [6] unless stated otherwise.

In the following, whenever we have an infinite Galois extension L/K, the Galois group
G(L/K) is endowed with the Krull topology, i.e. the topology with basis around 1 equal
to all cosets G(L/M), where M runs through all finite subextensions of L/K. If L/K
is finite, G(L/K) simply has the discrete topology. In any case, this makes G(L/K) a
topological group, as is readily checked:

Lemma 5.1. G(L/K) is a topological group in the Krull topology and the basis of sub-
groups around 1 {G(L/M) |M/K a finite subextension} consists of normal subgroups.

Proof. The multiplication G × G → G, (σ, τ) 7→ στ is continuous since the preimage of
the basis neighbourhood στG(M/K) contains the open subset σG(M/K) × τG(M/K).
The inverse map σ 7→ σ−1 is also continuous as the preimage of the basis neighbourhood
σ−1G(M/K) contains σG(M/K). For any finite Galois subextension M/K, M is a split-
ting field of some polynomial f . Any σ ∈ G(L/K) will permute the roots of f and hence
σ(M) = M . Let τ ∈ G(L/M). Then for any x ∈ M , we have σ−1τσ(x) = σ−1σ(x) = x.
This proves that G(L/M)EG(L/K) as claimed. �

If L/K is a Galois extension, we can consider maps f : G(L/K) → L× satisfying
f(στ) = f(σ)σf(τ). These are called crossed homomorphisms. A special case of crossed
homomorphisms are the maps fa : G(L/K)→ L× given by fa(σ) = σa/a for some a ∈ L×.
We state the following important theorem for later use (for a proof, we refer to [6, p. 14]):
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Theorem 5.2 (Hilbert’s Satz 90). Let L/K be a finite Galois extension. Any crossed
homomorphism f : G(L/K)→ L× is of the form f = fa for some a ∈ L×.

5.1 Kummer theory

Definition 5.3. LetK be a field containing the n’th roots of unity and assume (charK,n) =
1. A Kummer extension of K is an extension of the form L = K( n

√
∆) where ∆ is a sub-

group of K× containing the group K×n of n-th powers.

The definition means that L is generated by all n-th roots n
√
a for a ∈ ∆.

Lemma 5.4. A Kummer extension L/K is abelian of exponent n, i.e. G(L/K) is abelian
and σn = 1 for all G(L/K). Conversely, if L/K is abelian of exponent n, then L =
K( n
√

∆) for ∆ = L×n ∩K×.

Proof. Let L/K be a Kummer extension, L = K( n
√

∆). L/K is the composite of all its
finite subextensions and, by construction, each of these finite subextensions are themselves
composites of cyclic subextensions of the form K( n

√
a)/K for a ∈ ∆. These are all Galois

with Galois group a subgroup of µn (if b is a root of xn−a, the homomorphism G(L/K)→
µn, σ 7→ σb/b is an injection), hence L/K is abelian. Let σ ∈ G(L/K). Then we have
σn = 1 when σ is restricted to any finite cyclic subextension of the form K( n

√
a)/K, hence

we have σn = 1 on L.
Conversely, let L/K be abelian of exponent n and ∆ = L×n ∩K×. Obviously, K( n

√
∆) ⊆

L. Again, L/K is the composite of its cyclic subextensions. It thus suffices to prove
M ⊆ K( n

√
∆) for any cyclic subextension M/K. G(M/K) has order dividing n (this

follows from σn = 1). Thus, M is of the form M = K( n
√
a) with a ∈ L×n ∩ K×, so

M ⊆ K( n
√

∆), and the proof is complete. �

The following result is essential in Kummer theory, simplified for our purposes:

Theorem 5.5. If L = K( n
√

∆) is a Kummer extension, then ∆ = L×n∩K× and we have
an isomorphism

Hom(G(L/K), µn) ∼= ∆/K×n

given by

∆/K×n → Hom(G(L/K), µn), a (mod K×n) 7→ χa with χa(σ) =
σ n
√
a

n
√
a

Proof. Let L/K be a Kummer extension. Then L = K( n
√

∆) with ∆ = L×n ∩K× by the
previous lemma. Define the homomorphism

∆→ Hom(G(L/K), µn), a 7→ χa

with χa(σ) = σ n
√
a/ n
√
a. We have χa = 1 if and only if σ n

√
a = n

√
a for all σ ∈ G(L/K) if

and only if n
√
a ∈ K× i.e. a ∈ K×n. Thus, the kernel of the map is K×n and we have an

injective homomorphism
∆/K×n → Hom(G(L/K), µn)

For surjectivity, there are two cases. Assume first that G(L/K) is finite. Let χ ∈
Hom(G(L/K), µn), then χ : G(L/K) → L× is a crossed homomorphism, since χ(στ) =
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χ(σ)χ(τ) = χ(σ)σχ(τ) as χ(τ) ∈ µn ⊆ K. By Hilbert’s Satz 90, there exists a b ∈ L×
such that

χ(σ) =
σb

b
for all σ ∈ G(L/K)

Since σ(bn) = σ(b)n = χ(σ)nbn = bn for all σ ∈ G(L/K), we must have bn = a ∈
K× ∩L×n = ∆, so χ = χa, proving surjectivity in the finite case. Now assume L/K is an
infinite extension. In this case, we regard Hom(G(L/K), µn) as the set of all continuous
homomorphisms χ : G(L/K) → µn. We let {∆i/K

×n} denote the set of all finite sub-
groups of ∆/K×n, and we set Li = K( n

√
∆i). We then have ∆/K×n =

⋃
i ∆i/K

×n and
L =

⋃
i Li. Thus, the groupsG(L/Li) form a basis of open neighbourhoods of 1 inG(L/K).

Let χ : G(L/K)→ µn be a continuous homomorphism, then the kernel is open and hence
must contain a subgroup G(L/Li). χ induces a homomorphism χ̃ : G(Li/K) → µn such
that χ(σ) = χ̃(σ|Li). By the proof we just gave of the finite case, we have χ̃ = χ̃a for

some a ∈ ∆i. Then χ(σ) = χ̃a(σ|Li) = σ n
√
a/ n
√
a = χa(σ), hence χ = χa, and the proof

is complete. �

5.2 The reciprocity map and the norm residue symbol

We quickly recall the definition of a local field and the local reciprocity law. In particular,
the norm-residue symbol will be needed to define the Hilbert symbol. A field K is called
a local field if it is complete with respect to a discrete valuation and it has a finite residue
class field. It can be shown that any local field is either a finite extension of the p-adic
numbers Qp (local fields of this form are called p-adic number fields) or the field Fp(t) of
formal Laurent series over Fp (see chapter II, §5 in [7]).

Let K be a local field and let K̃/K be the maximal unramified extension of K. This
is equal to the composite of each finite unramified extension of K. Let L/K be a finite
extension so that L is itself a local field. If pK and pL denote the maximal ideals of the
valuation rings OK and OL, respectively, we have an extension (Galois) of the residue
fields L/pL over K/pK . The Galois group is cyclic of order f , called the inertia degree
(see chapter 4 in [5]). It has a generator, denoted by φ, satisfying

φ(a) ≡ a|K/pK | (mod pL) for all a ∈ OL

This generator is called the Frobenius automorphism. For an infinite extension, the
Frobenius automorphism becomes a so called topological generator. For a local field K,
φK ∈ G(K̃/K) denotes the Frobenius automorphism of the maximal unramified extension
K̃ of K. Consider a finite extension L/K and fix some Galois extension M of K containing
L. If n = [L : K] and H is the subgroup of G(M/K) with fixed field L, let σ1, ..., σn be a
system of left coset representatives of H in G(M/K). We define the norm-map

NL/K : L→ K by NL/K(a) =

n∏
i=1

σi(a).

We then have NL/KL = {NL/K(a) | a ∈ L}. We can now state

Theorem 5.6 (The local reciprocity law). For every Galois extension L/K of local fields,
we have a canonical isomorphism

rL/K : G(L/K)ab → K×/NL/KL
×
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given as follows: Let σ ∈ G(L/K) and let σ̃ ∈ G(L̃/K) be a lift of σ (i.e. σ̃|L = σ)
satisfying σ̃|K̃ = φnK for some n ∈ N (called a Frobenius lift of σ). If M is the fixed field
of σ̃ and πM is a prime element of M (i.e. πM generates the maximal ideal in OM ), then

rL/K(σ) = NM/K(πM ) (mod NL/KL
×)

That this map is even well-defined is a rather lengthy and technical argument. A full
exposition can be found in chapter II of [6]. The map has an inverse, from which we obtain
a map called the local norm residue symbol :

(·, L/K) : K× → G(L/K)ab

with kernel NL/KL
×. Another theorem we shall use is the following:

Theorem 5.7. If K is a local field which contains the n-th roots of unity and L =
K(

n
√
K×), then

G(L/K) ∼= K×/K×n with K× 3 a 7→ (a, L/K) ∈ G(L/K)

5.3 The Hilbert symbol

Now let K be a local field containing µn with (charK,n) = 1. Let L = K(
n
√
K×) be the

maximal Kummer extension of K of exponent n, then

Hom(G(L/K), µn) ∼= K×/K×n,

but by class field theory, we also have

G(L/K) ∼= K×/K×n,

so the bilinear map

G(L/K)×Hom(G(L/K), µn)→ µn, (σ, χ) 7→ χ(σ)

defines a nondegenerate bilinear (in the multiplicative sense) pairing(
·, ·
p

)
n

: K×/K×n ×K×/K×n → µn

called the Hilbert symbol. We go through the basic properties of the Hilbert symbol.

Lemma 5.8. For a, b ∈ K×, the Hilbert symbol (a, b/p)n is given by

(a,K(
n
√
b)/K)

n
√
b =

(
a, b

p

)
n

n
√
b

Proof. Under the isomorphism K×/K×n ∼= G(L/K), the image of a is the norm residue
symbol σ = (a, L/K). The isomorphism K×/K×n ∼= Hom(G(L/K), µn) maps b to the
map χb : G(L/K) → µn given by χb(τ) = τ n

√
b/ n
√
b. Spelling out the definition of the

Hilbert symbol, we have (
a, b

p

)
n

= χb(σ) =
σ n
√
b

n
√
b
,

and so (a,K( n
√
b)/K) n

√
b = (a, b/p)n

n
√
b. �
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Proposition 5.9. We have the following properties of the Hilbert symbol:

(i)
(
aa′,b
p

)
n

=
(
a,b
p

)
n

(
a′,b
p

)
n

(ii)
(
a,bb′

p

)
n

=
(
a,b
p

)
n

(
a,b′

p

)
n

(iii)
(
a,b
p

)
n

=
(
b,a
p

)−1
n

(iv)
(
a,−a
p

)
n

= 1

(v)
(
a,1−a

p

)
n

= 1

Proof. (i) and (ii) is just bilinearity of the Hilbert symbol. If b ∈ K× and x ∈ K such
that xn − b 6= 0 and ζ is a primitive n-th root of unity, we have

xn − b =

n−1∏
i=0

(x− ζiβ), βn = b.

Write n = d ·m, where d is the greatest divisor of n such that yd = b has a solution in K.
K(β)/K is a cyclic extension of degree m, and the conjugates of x− ζiβ are the elements
x− ζjβ with j ≡ i (mod d). Therefore

xn − b =

d−1∏
i=0

NK(β)/K(x− ζiβ),

implying that xn − b is a norm of K( n
√
b)/K. This is the case if and only if (xn −

b,K( n
√
b)/K) = 1, and by lemma 5.8, this is the case if and only if(

xn − b, b
p

)
n

= 1

Letting x = 0 and b = −a, we get (iv). Choosing x = 1 and b = 1− a, we get (v). It only
remains to show (iii):(

a, b

p

)
n

(
b, a

p

)
n

=

(
a,−a
p

)
n

(
a, b

p

)
n

(
b, a

p

)
n

(
b,−b
p

)
n

=

(
a,−ab

p

)
n

(
b,−ab

p

)
n

=

(
ab,−ab

p

)
n

= 1

�

5.4 Cubic reciprocity revisited

We are now almost ready to tackle cubic reciprocity from a new approach. We will need
one more theorem, but before presenting it, we fix some notation. For a number field
K containing µn, an element a ∈ K and a prime ideal p of OK such that na /∈ p, we
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may define the n-th power Legendre symbol (a/p)n to be the unique n-th root of unity
satisfying

a
N(p)−1

n ≡
(
a

p

)
n

(mod p)

See [1, p. 165] for details.

Theorem 5.10 (Strong Reciprocity). Let K be a number field containing µn and assume
α, β ∈ OK are relatively prime to each other and n. Then(

α

β

)
n

(
β

α

)−1
n

=
∏
p|n∞

(
α, β

p

)
n

where ∞ is the product of the real infinite primes of K, which only occur for n = 2.

Proof. We refer to chapter III in [3] for a proof. �

We can now give our alternate proof of cubic reciprocity. Let K = Q(ω) for ω = e2πi/3,
and let OK denote the ring of integers i.e. OK = Z[ω]. In this case, n = 3 and the only
prime in Z[ω] dividing 3 is λ = 1− ω. So Strong Reciprocity in this case is just(

α

β

)
3

(
β

α

)−1
3

=

(
α, β

λ

)
3

.

So proving cubic reciprocity amounts to showing:

α, β primary in OK ⇒
(
α, β

λ

)
3

= 1

α, β primary means that α, β ≡ −1 (mod 3OK). The residue symbol is unchanged
when the denominator is replaced by one of its associates, so we may assume α, β ≡
−1 (mod λ2OK) (λ2 is associated to 3). Let Kλ be the completion at λ and Oλ the
corresponding valuation ring. Proving cubic reciprocity thus amounts to proving:

α, β ≡ −1 (mod λ2Oλ)⇒
(
α, β

λ

)
3

= 1

We follow the proof outlined in exercise 8.9 of [1]:

Second proof of cubic reciprocity. Claim 1 : If α ≡ −1 (mod λ4Oλ), there exists u ∈ Oλ
such that α = u3 for some u ∈ Oλ. We prove this by inductively constructing a coherent
sequence (un) in Oλ with α ≡ u3n (mod λnOλ) for all n ≥ 4. The case n = 4 holds by
assumption since −1 = (−1)3. If un is defined for n > 4, let un+1 = un+aλn−2 for a ∈ Oλ
to be determined. Then

u3n+1 = u3n + 3u2naλ
n−2 + 3una

2λ2n−4 + a3λ3n−6

Note that 2n−4, 3n−6 ≥ n+1 as n > 4. Thus, we have u3n+1 ≡ u3n+3u2naλ
n−2 (mod λn+1Oλ).

Write α = u3n + bλn, then we have (recall that 3 = −ω2λ2):

u3n+1 ≡ α− bλn + u2n(−ω2a)λn (mod λn+1Oλ)
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If we furthermore write un = c+dλn, we get u2n = c2+d2λ2n+2cdλn ≡ c2+2cdλn (mod λn+1Oλ).
Substituting this into the previous equation gives:

u3n+1 ≡ α− bλn + (c2 + 2cdλn)(−ω2a)λn ≡ α− bλn − c2ω2aλn − 2cdaω2λ2n

≡ α− bλn − c2ω2aλn ≡ α− λn(b+ c2ω2a) (mod λn+1Oλ)

So our task amounts to solving b + c2ω2a ≡ 0 (mod λOλ) i.e. c2ω2a ≡ −b (mod λOλ)
for a. The condition un ≡ un−1 (mod λn−1Oλ) shows that λ - c (otherwise we could not
have u4 ≡ −1 (mod λ4Oλ)). In other words, c is a unit and therefore c2ω2 is also a unit.
This proves that the equation has a solution for a, and we have constructed the desired
sequence (note that un+1 ≡ un (mod λnOλ)). By completeness of Oλ, (un) converges to
some element u ∈ Oλ with α = u3.

Claim 2: If α, α′ ∈ O×λ and α ≡ α′ (mod λ4Oλ), then (α, β/λ)3 = (α′, β/λ)3 for all
β ∈ K×λ . Note that −1 ≡ −αα−1 ≡ −α′α−1 (mod λ4Oλ), so applying the first claim, we
have −α′α−1 = u3 for some a ∈ Oλ:(

−α′α−1

λ

)
3

=

(
u, β

λ

)3

3

= 1 i.e.

(
α′α−1

λ

)
3

= 1

Using the simple fact that (−1, β/λ)3 = 1 as −1 = (−1)3. We conclude:(
α′, β

λ

)
3

·
(
α−1, β

λ

)
3

= 1 i.e.

(
α′, β

λ

)
3

·
(
αα−1, β

λ

)
3

=

(
α, β

λ

)
3

i.e.

(
α′, β

λ

)
3

=

(
α, β

λ

)
3

as claimed.

Finally, assume that α ≡ β ≡ −1 (mod λ2Oλ). Write α = −1 + aλ2 and β = −1 + bλ2

for a, b ∈ Oλ. Note that:

−1 + aβλ2 = −1 + a(−1 + bλ2)λ2 = −1− aλ2 + abλ4 ≡ −1− aλ2 (mod λ4Oλ)

In other words, 1+aλ2 ≡ 1−aβλ2 (mod λ4Oλ). Using properties (i), (v) and the previous
claim: (

α, β

λ

)
3

=

(
−α, β
λ

)
3

·
(
−α, aλ2

λ

)
3

=

(
−α, aβλ2

λ

)
3

By noting that −α(1+aλ2) ≡ 1 (mod λ4Oλ), we can continue the computation as follows:(
−α, aβλ2

λ

)
3

=

(
−α, aβλ2

λ

)
3

·
(

1− aβλ2, aβλ2

λ

)
3

=

(
−α, aβλ2

λ

)
3

·
(

1 + aλ2, aβλ2

λ

)
3

= 1

And the proof is complete.
�
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