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Abstract

In this thesis, we present and explore the random
survival forest procedure, a machine learning algo-
rithm for predicting the cumulative hazard from right-
censored survival data. We explore the algorithm
from a practical perspective by implementing the method
from scratch in Julia and analysing several real datasets
as well as a simulated dataset from life insurance.
We furthermore investigate the theoretical properties
of the algorithm by stating and proving consistency.
The �nal part of the project concerns an extension of
the random survival forest to multi-state models. We
describe estimation in such a model and establish a
new result on consistency for a single tree under the
Markov assumption.

Resumé

I denne afhandling præsenterer og udforsker vi ran-
dom survival forest-proceduren, en maskinlæringsal-
goritme til prædiktion af den kumulerede dødelighed
fra højre-censureret overlevelsesdata. Vi udforsker al-
goritmen fra et praktisk perspektiv ved at implementere
metoden fra bunden i Julia og ved at analysere adskil-
lige virkelige datasæt samt et simuleret datasæt fra
livsforsikring. Vi kortlægger ydermere de teoretiske
egenskaber for algoritmen ved at formulere og be-
vise konsistens. Den sidste del af projektet omhand-
ler en udvidelse af random survival forest til �ertil-
standsmodeller. Vi beskriver estimation i sådan en
model og etablerer et nyt resultat om konsistens for
et enkelt træ under Markovantagelsen.



P. C. Skovgaard, Bøgeskov i maj. Motiv fra Iselingen, 1857.

�For man also knoweth not his time: as the �shes that are taken in an
evil net, and as the birds that are caught in the snare; so are the sons of
men snared in an evil time, when it falleth suddenly upon them.�
- Ecclesiastes 9:12
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1 Introduction

�The man who moves a mountain begins by carrying away small stones.�
- Confucius

1.1 Background and motivation

A classical problem in statistics and insurance is modelling and predicting mortal-
ity. In biostatistics, it is often the case that patients in a study can drop out of
the study before the time of death is observed. This phenomenon is referred to as
(right-)censoring. The landmark achievement in incorporating censoring is to shift
the perspective from the survival function of the data to the cumulative hazard, the
most famous estimator being the Nelson�Aalen estimator. This nonparametric esti-
mator has been extensively studied and applied for decades. Another challenge lies
in incorporating covariates. A popular model in this regard is the Cox proportional
hazards model. This model is semiparametric in nature, leaving the baseline hazard
unspeci�ed while assuming that the covariate e�ects are proportional. An alternative
is a parametric approach where the hazard (and thus the density) is fully speci�ed.
A classical example is the Gompertz�Makeham model, to be discussed further be-
low. In recent years, nonparametric approaches from the area of machine learning
have gained traction. In 2008, Ishwaran, Kogalur, Blackstone and Lauer introduced
random survival forests, Ishwaran et al. [32], an ensemble learning method utilising
the popular random forest procedure as introduced by Breiman [10] for analysing
right-censored survival data. A signi�cant advantage of machine learning methods
is that, in contrast to parametric and semiparametic methods, complex relations
between covariates need not be modelled explicitly. This allows for the algorithm to
�nd complex patterns in data, enabling more precise prediction.

In insurance and certain areas of biostatistics, the survival model is not adequate
to describe the behaviour of the policyholder/patient, and a more general multi-
state model is therefore needed. In life insurance, the famous seven state model (see
e.g. chapter VII in Asmussen and Ste�ensen [5]) has become state of the art in
the industry. Often the transition rates are estimated by parametric means such as
piecewise constant intensities. When the goal is accurate prediction, such models
pose unnecessarily strict assumptions. Furthermore, many estimation methods that
incorporate covariates (e.g. kernel methods) su�er from the curse of dimensionality.
It is therefore of great value to develop machine learning methods for multi-state
models that are accurate and robust, even when many covariates are present.

1.2 Structure of the project

The project is structured as follows. Sections 2 and 3 concern preliminaries on ma-
chine learning and mathematics used throughout the project. We go through the
basics of decision trees and random forests for regression and classi�cation. As for
mathematics, particular emphasis is on the product integral and its properties. These
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properties will be put to use throughout the project in di�erent contexts. We also re-
call some results from probability theory related to survival analysis such as counting
processes, the Doob�Meyer decomposition and Lenglart's inequality. In section 4, we
discuss survival analysis in both a nonparametric and a parametric framework. The
main object of interest is the Nelson�Aalen estimator and its asymptotic properties.
Parametric estimation is discussed since we later wish to compare machine learning
methods to classical parametric methods. Section 5 is about random survival forests
(RSF) and is the heart of the thesis. We present the RSF algorithm in detail and
describe �ve di�erent splitting rules. We present a wide variety of analyses carried
out using RSF on both real data and simulated insurance data. This constitutes the
practical work of the thesis. The rest of section 5 is dedicated to a proof of consistency
for RSF based on the one in Ishwaran and Kogalur [31] but under di�erent assump-
tions that are more generalisable to the multi-state setup. This closes the discussion
of survival models in the project. Section 6 provides the background on multi-state
models. We discuss estimation in a general context based on the exposition in Bladt
and Furrer [6] while more theoretical emphasis is put on the Markov model with
intensities. Section 7 concerns the work done on extending the RSF algorithm to
multi-state models, a procedure we have chosen to call the Aalen�Johansen forest.
We consider some theoretical aspects of such an algorithm with particular empha-
sis on a new result, namely consistency for a single Aalen�Johansen tree under the
Markov assumption. Section 8 concludes the thesis with a discussion on future work.

As part of the thesis, a Julia library, JuliaExtendableTrees, has been written.
The code is available via the link

https://github.com/RasmusFL/JuliaExtendableTrees

Most of the analyses in the project have been carried out using this library. The
code for running the analyses is available via

https://github.com/RasmusFL/ThesisAnalyses

A thorough but concise introduction to the library can be found in appendix A. Most
of the code for doing the analyses is in appendix B, while all code not written in Julia
can be found in appendix C. Appendix D contains a brief discussion of conditional
independence as well as a proof of a theorem in section 6.

1.3 Acknowledgements

I would like to thank my supervisor Martin Rainer Bladt for his helpful advice, en-
couragement and overall excellent supervision. I also want to thank my co-supervisor
Niklas P�ster for sharing his insight into machine learning and the practical aspects
of the project. I furthermore wish to express my gratitude to Christian Furrer for
helpful discussions concerning both the project and my plans for the future.
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2 Preliminaries from machine learning

�The real problem is not whether machines think but whether men do.�
- B. F. Skinner

The goal of this section is to provide a primer on the tree-based learning methods
needed during the project. We start from the bottom with a single decision tree and
continue with a discussion on bagging and random forests.

2.1 Tree-based learning methods

2.1.1 Introduction and terminology

Tree-based learning methods are machine learning methods built on decision trees.
Our main reference for this section is the book Breiman et al. [11]. Assume we are
given data on the form (X1, Y1), ..., (Xn, Yn) with each Xi a vector of covariates. It
is typical in machine learning to refer to the Yi as labels and the Xi as features. A
decision tree is a binary tree constructed by performing splits in the form of yes/no
questions on the variables in X = (X1, ..., Xn). An example could be "is X3 ≤ 4".
The data satisfying this constraint goes to the left node and the remaining data to
the right node. It is important to note that each split separates the feature data
X1, ...,Xn into two disjoint subsets. An illustration of a decision tree is below.

X

X1 X2

X3 X4 X5 X6

X7 X8 X9 X10

X11 X12

Figure 1: A simple decision tree. Here X = {X1, ...,Xn} denotes all the available
feature data. As an example, we have X1 ∩ X2 = ∅ and X1 ∪ X2 = X .

The leaves in the tree are called terminal nodes. When we construct a decision tree
from data (referred to as growing the tree), the terminal nodes decide the predicted
values of the learner. In classical tree-based learning, one distinguishes between two
types of labels. If the Yi take a �nite number of values 1, ..., J , each j representing a
class, we talk about classi�cation trees. If the Yi may take any value in an interval,
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we talk about regression trees. A common terminology is CART (Classi�cation And
Regression Trees). We shall later see that the trees in random survival forests don't
fall into either of these categories, but since all the methodology (and terminology)
carry over directly to RSF, it makes sense to discuss the basics of CART.

2.1.2 Growing a tree

In growing a decision tree, the following need to be speci�ed:

(i) Selecting the splits, in this project referred to as a splitting rule.

(ii) When to declare a node terminal.

(iii) The predicted value of a terminal node.

We start by adressing (iii). In the case of classi�cation, a typical rule is to let the
predicted class be the most common class in the terminal node (majority rule). In
regression, one typically lets the predicted value be the average of the Y ′i s belonging
to the Xi that fall into the terminal node. As for (i), we start by considering the
problem of classi�cation. The key idea is to choose a split which maximises the
di�erence in proportions of the di�erent classes. The following �gure illustrates this
idea.

X1

X2

Figure 2: A simple illustration of splitting. We have three classes. The vertical
dashed line indicates the �rst split in the data, while the horisontal line indicates
the second split.

One formalisation of this idea is the following. Let h denote a node in the tree and
pj(h) the proportion of data points with label j in node h. We then consider an
impurity function i which, for a node h, gives a measure of the �impurity� of the
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data in h. The impurity function i should be largest when the proportions of the
di�erent labels are the same and smallest when all the data belongs to the same
class. Let S denote the set of possible splits at h. With the above �gure in mind,
such a split could be �is X1 ≥ 3?� This separates the data into two nodes, hR and
hL. For a given split s, the di�erence in impurity is

∆i(s, h) := i(h)− pLi(hL)− pRi(hR)

with pL and pR denoting the proportions of the data in the left and right node,
respectively. Now go through all possible splits s and choose the split that maximises
∆i(s, t). Note that we may intuitively interpret this as the split that minimises the
tree �impurity�. Popular choices for the impurity function i include the entropy
de�ned by

E(h) = −
∑
j

pj(h) log2 pj(h).

and the Gini coe�cient

G(h) = 1−
∑
j

pj(h)2.

We can now discuss the point (ii) on when to declare a node terminal. A simple
solution is to set a threshold for the gain in ∆i(s, t) and simply say that a node is
terminal if for every split s, ∆i(s, t) < β for some chosen threshold β > 0. The
problem with this approach is that we may lose good splits by setting β too high,
while setting β too low results in a very complex tree that may severely over�t the
data. Another approach is therefore to start by growing a full tree and thereafter
prune the tree by removing more and more branches by gradually increasing the
penalty for complexity (many terminal nodes). This yields a series of simpler and
simpler subtrees of the full tree, and the �nal tree is chosen among these according
to some criterion. Chapters 3 and 10 in Breiman et al. [11] discuss pruning and
present a method called minimal cost-complexity pruning. Since this is not relevant
for random forests, we omit further discussion of pruning here. Typical criteria for
when splitting should stop include setting a minimum size for a terminal node or
restricting the depth a tree can reach. We later investigate the e�ect of changing
these two criteria on a real dataset.

The story for regression trees is very similar. A typical approach is least squares
regression where the goal is to minimise the least squared error. Let T denote the
tree and N (T ) the set of terminal nodes. For a given node h, let nh be the number
of data points in h and let

Ȳ (h) =
1

nh

∑
Xi∈h

Yi

denote the empirical average of the Yi in h. We then de�ne the estimator of the least
squared error of the tree T by

R(T ) =
1

n

∑
h∈N (T )

∑
Xi∈h

(Yi − Ȳ (h))2.
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De�ning

R(h) =
1

n

∑
Xi∈h

(Yi − Ȳ (h))2,

we can also write R(T ) =
∑

h∈N (T )R(h). Now assume we are in the process of
constructing a tree, and that h is currently a terminal node. Consider a split s
which separates the data in h into left and right nodes hL and hR. De�ning

∆R(s, h) = R(h)− pLR(hL)− pRR(hR),

we choose the split s such that ∆R(s, h) is maximised. An alternative to least squares
regression is to replace R with the absolute di�erence

R(h) =
1

nh

∑
Xi∈h

|Yi − Ȳ (h)|.

In any case, the problem of when to declare a node terminal needs to be adressed.
For a single tree, it is preferred to grow the tree to full size and then prune it. The
story is similar to classi�cation trees and is adressed in chapter 8 in Breiman et al.
[11].

2.2 Bagging and random forests

Typically when using machine learning, the goal is to obtain a learner which is as
accurate as possible. In that regard, using a single tree is far from optimal. A
straightforward method to obtain more precise estimates is to use bootstrap aggrega-
tion, more commonly referred to as bagging. The idea of bootstrapping goes back to
Efron [18] and is typically used to assess di�erent properties of estimators such as
standard deviations or approximating the distribution of an estimator or estimand.
As for tree-based learners, in the article Breiman [8], Breiman argues that one can
obtain substantial improvements in accuracy by aggregating the predictions from
many individual decision trees. To be more precise, assume we are given a learning
set L = {(Xi, Yi) : i = 1, ..., n} as above. Then draw B datasets with replacement
from L and �t the learner on each of these. In the case of regression, simply take the
empirical average to get the �nal prediction. For classi�cation, the predicted class
is simply chosen by majority rule.

How much does bagging improve accuracy? As explained in slightly more detail in
section 4 of Breiman [8] for the case of regression, two factors are at play:

(i) The stability of the learner, that is, how much predictions vary from changes
in the training set.

(ii) The loss of accuracy from sampling with replacement.

Let us elaborate on these two factors. If the learner is unstable, so that we see
large variations in the predicted values when the training set varies, the aggregation
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can substantially improve accuracy. On the other hand, if the learner is stable, the
predictions vary very little and bagging has little e�ect. At the same time, whenever
sampling with replacement is done, we �t a slightly less accurate learner compared
to using the entire data set. So for a very stable learner, we can actually experience
a loss of accuracy from bagging. An example of this phenomenon is using a linear
model on data with strong linear tendencies.

Further improvements for tree-based learners can be obtained by injecting random-
ness into the process of growing the trees when using bagging. In the article Breiman
[10] from 2001, Breiman explores randomly selecting the features used for growing
each tree. The number of features used in �tting a tree becomes a new hyperpa-
rameter in the algorithm. Breiman called this procedure Forest-RI. While di�erent
variations of random forests exist, today, the term random forest typically refers to
Breiman's method. Random forests have since become immensely popular since the
method compares favorably to many state of the art methods such as boosting while
remaining simple to use. Further advantages are relatively fast �tting times and
robustness to outliers and noise.

Section 2 in Breiman [10] provides some mathematical arguments for why random
forests work. The key observation is that the generalisation error can be minimised
by increasing the strength of the individual trees and reducing the correlation be-
tween the trees. It turns out that randomly selecting the available features in each
split reduces the correlation between the trees while preserving much of the pre-
dictive strength. Another possible way of decreasing correlation is to change the
bootstrap sampling scheme. While most of the theory for random forests (including
survival forests, as we shall see later) is formulated in terms of ordinary bootstrap-
ping, where a bootstrap sample set is of the same size as the original, it is worth
considering a di�erent approach. An alternative is to subsample (with or without
replacement) a dataset whose size is a certain fraction of the original, say 0.7. An
obvious downside is a decrease in accuracy due to less data being used to grow each
tree. For large datasets however, this downside may be negligible while the method
may substantially decrease �tting times.

2.2.1 Out-of-bag error estimates

We want to assess the prediction error of our learning method as accurately as pos-
sible. The most naive method is to simply apply the learner on the training set and
compare the result from the learner with the correct labels using some loss function.
The problem with this approach is that it can severely underestimate the error since
the learning algorithm is designed to minimise the loss on its training set. A more
appropriate method that is often used in practice is to set aside a predetermined
amount of data (for example 30%) to be used for testing purposes and train the
learner on the remaining data. This provides more accurate estimates of the error,
although some strength is lost due to less data being used for training.

8



When using bagging, an alternative is to compute the out-of-bag (OOB) error.
Loosely speaking, OOB error works by only aggregating predictions over the learners
�tted on a bootstrap set not containing the input feature. In the case of regression
or classi�cation, the method can be stated more precisely as follows.

1. From the learning set L, draw B bootstrap samples L1, ...,LB and �t the
learner on each of these.

2. For each (Xi, Yi) in the learning set L, aggregate only over those learners
for which the corresponding bootstrap training set does not contain (Xi, Yi).
Formally, we de�ne Ii,b by

Ii,b =

{
1, if (Xi, Yi) ∈ Lb
0, otherwise

.

In the least squares regression paradigm, the OOB error in a node h is then
estimated by

1

nh

∑
i:Xi∈h

∑B
b=1 Ii,b(Yi − Ȳ (h))2∑B

b=1 Ii,b
.

The approach is similar for classi�cation. Simply replace the error with

1

nh

∑
i:Xi∈h

∑B
b=1 Ii,b1{Yi 6=Ŷ (h)}∑B

b=1 Ii,b

with Ŷ (h) the prediction in the node h given by majority rule.

We leave out further discussion here and instead refer to the article Breiman [9] for
more background. In contrast to the naive approach to estimate the error using all
bootstrap sets, the OOB error has a tendency to overestimate the error. This is a
consequence of the sampling process. Approximately 37% of the original data is left
out in each bootstrap sample, and since the error decreases with larger data samples,
we get an estimate which is biased upward. The extent of this bias is discussed in
the article Janitza and Hornung [36]. While this bias is a de�ciency, the OOB error
has several advantages. One clear advantage is computational e�ciency. In contrast
to other popular methods such as cross-validation, OOB error estimation requires
no additional computations, and it takes little e�ort to save the indices Ii,b during
the �tting process. Furthermore, there is empirical evidence that the OOB estimate
is as accurate as using a test set of the same size as the training set. Hence OOB
may remove the need to set aside a test set in the �rst place, see Breiman [9].

2.2.2 Empirical studies

We now present some applications of random forests in classi�cation and regression.
All analyses were made using the JuliaExtendableTrees library, and the pri-
mary purpose of this subsection is to illustrate the basic utilities of the package.
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Some of the code used to �t the forests can be found in appendix B. All �gures were
made using the Algebra of Graphics library for Julia, [1]. The hyperparameters are
the following:

� L: The function used to evaluate the value of the split. Possible choices for
classi�cation are L_Gini_coeffcient and L_Entropy. For regression, the
choices are L_squared_error and L_abs_error.

� max_depth: The maximal depth of a tree. max_depth = 0 corresponds to
no maximal depth. The default value is 10 for classi�cation and regression.

� min_node_size: The minimal size of a terminal node e.g. the minimal num-
ber of observations in a terminal node. The default value is 5 for classi�cation
and 10 for regression.

� n_features: Number of features that may be used in every split. By default,
we use the square root of the total number of features rounded to the nearest
integer.

� n_split: Maximum number of threshold values chosen from a feature when
a node is to be split. By default, n_split = 10.

� n_trees: Number of trees in the forest.

� sfrac: Fraction of data being extracted in each bootstrap sample. Must be
a number in (0, 1]. The default value is 0.7.

� swr: true means that sampling with replacement is applied, false (default)
means without replacement.

We will investigate the e�ect of most of these hyperparameters in the following, some
on a classi�cation dataset and others on a regression set. We start by considering
a dataset for classi�cation. We use the White Wine Quality Data (wine) dataset,
which can be found in the randomForestSRC package, Ishwaran et al. [33]. The
labels have 11 levels, namely the integers 0 to 10, denoting the quality of the wine
as assessed by wine experts. 0 is very bad and 10 is excellent. The dataset has 11
features, including measures of acidicity, pH, alcohol percentage and sulphates. The
dataset contains 4898 observations and no missing data.

The �rst hyperparameters to be investigated are the split value function and the
subsampling scheme. As mentioned earlier, using a smaller fraction of the data to �t
each tree can reduce the number of computations substantially, so if we are able to
get away with using a smaller fraction of the data without reducing the accuracy by
too much, it is preferred to decrease sfrac. We test the values 0.1, 0.2, ..., 0.9, 1.0 of
sfrac where we use swr = false for all values except sfrac = 1.0 (otherwise
we would �t all trees on the same data). We set n_trees = 1000, max_depth
= 10, n_split = 10 and n_features is set to the square root of the number
of features in total (rounded to the nearest integer). The following plot shows the
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change in generalisation error (misclassi�cation rate) when varying the fraction of
the data used as just described.

Figure 3: The generalisation error of a random forest �tted on the wine dataset
for varying values of sfrac. The data is subsampled without replacement except
in the case of sfrac = 1.0. The yellow lines are the training error estimates and
the blue lines the OOB error estimates.

There are some interesting observations from these �gures. The �rst is that the
training error (yellow lines) decreases as a function of the fraction, which is not
surprising. The more of the data actually used for growing a tree, the more the
forest is optimised in terms of minimising the training error. As for the OOB error
(blue lines), it hardly changes. One explanation is that the forest is poorly �tted
for the small values of sfrac while too little of the data is OOB for larger values
of sfrac which gives the OOB error an upward bias. Another explanation is that
the dataset is very noisy. Running the same analysis in the randomForestSRC
package con�rms this hypothesis. It seems impossible to get an OOB error below
0.40. As a �nal comment, it seems that using the entropy as the splitting rule very
marginally improves the accuracy over the Gini coe�cient. It is not clear how one
should choose sfrac from these �gures, but 0.7 seems like a good guess.

Next we investigate varying the minimal size a node can be. Increasing the minimal
size of a node is a way of regularising the trees as to prevent over�tting. But
increasing the minimal size too much also means that the tree is not able to capture
more complex patterns in the data. The plot below shows the generalisation error
when varying the minimal node size. We have chosen sfrac = 0.7 and swr =
false with all other hyperparameters like before.
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Figure 4: The generalisation error of a random forest �tted on the wine dataset for
varying values of min_node_size. The yellow line is the training error estimate
and the blue line the OOB error estimate.

This �gure con�rms the hypothesis that the data is quite noisy. The training
error increases substantially for larger terminal nodes, while the OOB error re-
mains the same. It is also likely that over�tting is taking place for small values
of min_node_size.

The �nal hyperparameter to be investigated on the wine dataset is the maximum
node depth, max_depth. The maximum depth of a node sets a direct restriction
on how deep/complex a tree can be and therefore acts as a regularisation param-
eter. The plot below shows the generalisation error when varying the maximum
node depth. The other hyperparameters are the same as before, where we choose
min_node_size to be 10.
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Figure 5: The generalisation error of a random forest �tted on the wine dataset for
varying values of max_depth. The yellow line is the training error estimate and
the blue line the OOB error estimate.

This concludes our study of the wine dataset, as we also want to illustrate the
uses of JuliaExtendableTrees on regression data. For regression data, we use
the Boston Housing dataset (BostonHousing, available through the R package
mlbench, Leisch et al. [43]). The data was originally published in the article Har-
rison and Rubinfeld [26] and consists of 506 observations with no missing values.
The label is the median value in $1000 of owner-occupied homes. There are 13
features in total. We �rst consider the e�ect of varying the number of features avail-
able in each split, n_features. We use the squared error as splitting function as
well as max_depth = 5, min_node_size = 5, n_split = 10, n_trees =
1000, sfrac = 0.7 and swr = false.
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Figure 6: The mean squared error as a function of the number of features available
in each split of a random forest �tted on the BostonHousing dataset. The yellow
line is the training error and the blue line the OOB error. The case n_features =
13 corresponds to simply using bagging since the randomness in the chosen feature
is omitted.

The �gure illustrates the rationale for using random forests quite well. Not surpris-
ingly, the error is high when few features are available. The error decreases until
about half of the features are used, and then it starts climbing again. A plausible ex-
planation is that some of the features are not strong predictors of the median value,
but using more of them still introduces additional correlation between trees. Recall
that we can expect predictive strength to increase when the correlation between trees
is reduced and the predictive strength of each tree is increased. For this particular
dataset, it seems that n_features = 7 strikes a good balance between reducing
the correlation between trees while preserving predictive strength. We thus choose
n_features = 7 for the �nal part of the analysis.

As a �nal demonstration of the library for regression, we consider the e�ect of varying
the number of trees in the forest. When playing around with the data and hyperpa-
rameters, it was very clear that max_depth was essential in minimising the mean
squared error. After some experimentation, max_depth = 10 turned out to be a
good choice. The following plot shows the error when varying the number of trees.
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Figure 7: The mean squared error as a function of the number of trees in the forest.
The yellow line is the training error, while the blue line is the OOB error. The
number of trees vary over the values 10, 25, 50, 100, 200, ..., 900, 1000, 1500, 2000
and 2500.

Judging by the �gure, it seems that for this particular dataset, the gain from using
more than 1000 trees is negligible.

2.2.3 Using one tree versus many

Let us conclude this section with a brief discussion of using a single tree versus
using many. An obvious advantage of using a single tree is that the algorithm is
easily interpretable and explainable. This explainability is lost when we instead �t,
say, a thousand trees and aggregate the results over all of them. However, for most
purposes, the increase in accuracy when using forests more than compensates for the
lack of interpretability. As discussed in section 9.2.4 of Hastie et al. [27], a single
decision tree has the disadvantage of high variance. Slight alterations in the training
data can change the �nal tree substantially. A major reason for this is the process
of growing the tree itself. An early split a�ects every subsequent split and hence
the error e�ect propagates all the way down the tree. Bagging remedies this by
�averaging away� some of this variance. Similarly, individual trees have a tendency
to over�t unless strict regularisation is applied, for example, by punishing trees with
many terminal nodes. In bagging, this is rarely an issue, since the trees often over�t
�in di�erent directions�, and bagging again averages this error away.
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3 Mathematical preliminaries

�If in other sciences we should arrive at certainty without doubt and truth
without error, it behooves us to place the foundations of knowledge in
mathematics...�
- Roger Bacon

This section covers the necessary mathematical preliminaries. Particular emphasis
is placed on the tools required for later proofs of consistency and the setup of multi-
state modelling.

3.1 The product integral

We start by covering the product integral. All results are from the article Gill and
Johansen [22], in which most of the proofs can also be found. The product integral
allows for compact and elegant formulations of many formulas and results from
statistics and probability theory. The product integral has been rediscovered several
times in varying degrees of generality since its introduction by Volterra in 1887,
Volterra [53]. As a consequence, several equivalent de�nitions of the product integral
have emerged. Our starting point will be the product limit de�nition. Consider an
interval (0, T ], T =∞ being a possibility, equipped with the sigma-algebra of Borel
sets B((0, T ]). Let X denote a p× p matrix of �nite signed measures on ]0, T ]. We
will also denote the distribution function of X by X, X(t) = X((0, t]). We let I
denote the identity matrix.

De�nition 3.1. Given X as above, we de�ne the product integral

Y (t) = T
(0,t]

(I +X(ds))

as
Y (t) = lim

max |ti−ti−1|→0

∏
i

(I +X((ti, ti−1))

where the limit is taken over every �nite partition 0 = t0 < t1 < · · · < tn = t of
(0, t], and the matrix product is taken in its natural order.

Remark 3.2. The above de�nition only de�nes the product integral over sets of the
form (0, t]. To de�ne the product integral over a general Borel set B, we do as
follows. Let dXB = 1BdX and let YB be the product integral of XB. We then
de�ne the product integral Y over B by

Y (B) = T
B

(I +X(ds)) = YB(T ).

◦
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Remark 3.3. One should of course show that the product integral exists. This is
done in Gill and Johansen [22] via the concept of domination, �rst in the simple
case where p = 1 and later for general p. For the sake of brevity, we will not further
pursue proofs of existence (or uniqueness). ◦

Remark 3.4. We choose to follow the exposition in Gill and Johansen [22] where the
product integral is de�ned for measures. The theory can just as well be stated for
functions. Let X be a càdlàg function of locally bounded variation, that is, for every
0 ≤ s < t, the variation over (s, t] given by

|X|(s, t) = sup
s=t0<t1<···tn=t

∑
i

|X(ti)−X(ti−1)|

is �nite. Like the limit before, the supremum is taken over every �nite partition of
(s, t]. In this case, the product integral of X is de�ned by

Y (t) = T
(0,t]

(I +X(ds)) = lim
max |ti−ti−1|→0

∏
i

(I +X(ti)−X(ti−1)).

In the special case of X being a pure jump function (with countably many jumps),
we see that the product integral is given by

Y (t) =
∏
(0,t]

(I + ∆X(s)).

◦

From the product limit de�nition of the product integral just given, the following
proposition is a straightforward consequence.

Proposition 3.5. For any s < u < t, we have

Y ((s, t]) = Y ((s, u])Y ((u, t]).

We now present another de�nition of the product integral, namely the Péano series.

De�nition 3.6. The product (matrix) measure X(n) is de�ned as the measure sat-
isfying

X(n)(B1 × · · ·Bn) = X(B1) · · ·X(Bn)

for Borel subsets B1, ..., Bn. For an interval D, de�ne the set U(D;n) given by

U(D;n) = {(u1, ..., un) ∈ Dn : u1 < · · · < un}.

The Péano series is de�ned by

P (D;X) = I +

∞∑
n=1

X(n)(U(D;n)) = I +

∞∑
n=1

∫
· · ·
∫

u1<···<un;ui∈D

X(du1) · · ·X(dun).
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Theorem 3.7. The product integral may be de�ned in terms of the Péano series as
follows,

P ((s, t];X) = T
(s,t]

(I +X(ds)).

Proof. See section 2.4 in Gill and Johansen [22]. �

Using the Péano series de�nition of the product integral, an equivalent and highly
useful de�nition can be given, namely as the solution to certain forward and backward
integral equations. To formulate the theorem, consider the matrix-valued measure
Y as a function Y (s, t) = Y ((s, t]). We will refer to such a function as an interval
function. If α denotes an interval function, we call α additive if α(s, t) = α(s, u) +
α(u, t) for any s ≤ u ≤ t. We call α multiplicative if α(s, t) = α(s, u)α(u, t) for any
s ≤ u ≤ t. With this terminology in place, we see that a matrix valued �nite measure
X can be considered as an additive interval function and that the corresponding
product integral is a multiplicative interval function.

Theorem 3.8. The product integral Y satis�es the two equations

Y (s, t) = I +

∫ t

s
Y (s, u−)X(du),

Y (s, t) = I +

∫ t

s
X(du)Y (u, t).

Conversely, if Y is a function Y (s, t) which is càdlàg in both variables and if Y
satis�es either of the two integral equations above, Y is equal to the product integral

P
(s,t]

(I +X(du)).

Proof. Let Y denote the product integral Y (s, t) = P
(s,t]

(I + X(du)). Consider the

(n+ 1)'th term of the Péano series and apply Fubini's theorem to obtain

X(n+1)(U((s, t];n+ 1)) =

∫ t

s
X(n)({(u1, ..., un) : (u1, ..., un, u) ∈ U((s, t];n+ 1)})X(du)

=

∫ t

s
X(n)(U((s, u);n))X(du).

We can now verify that Y satis�es the forward equation. Indeed,

Y (s, t)− I =
∞∑
n=1

X(n)(U((s, t];n))

=

∫ t

s
I +

∞∑
n=1

X(n)(U((s, u−);n))X(du) =

∫ t

s
Y (s, u−)X(du).

The backward equation is proven in a similar fashion. The proof of the converse
statement can be found in the proof of Theorem 5 in Gill and Johansen [22]. �
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We also need the following extension of this result. Gill and Johansen [22] refer to
this result as the inhomogeneous equation. A proof is not given, so we provide one
here for completeness.

Theorem 3.9. Let Z and W be k×p càdlàg matrix functions and X a p×p matrix
measure of bounded variation. Then Z satis�es the equation

Z(t) = W (t) +

∫ t

0
Z(s−)X(ds)

if and only if

Z(t) = W (t) +

∫ t

0
W (s−)X(ds) T

(s,t]

(I +X(du))

= W (0) T
(0,t]

(I +X(ds)) +

∫ t

0
W (ds) T

(s,t]

(I +X(du)).

Proof. We start by establishing that

K(t) :=

∫ t

0
W (s−)X(ds) T

(s,t]

(I+X(du)) =
∞∑
n=1

∫
· · ·
∫

0<u1<···<un≤t

W (u1−)X(du1) · · ·X(dun).

Using the Péano series, we get

K(t) =

∫ t

0
W (s−)X(ds)

I +
∞∑
n=1

∫
· · ·
∫

s<u1<···<un≤t

X(du1) · · ·X(dun)


=

∫ t

0
W (s−)X(ds) +

∞∑
n=1

∫ t

0

∫
· · ·
∫

s<u1<···<un≤t

W (s−)X(ds)X(du1) · · ·X(dun)

=

∫ t

0
W (s−)X(ds) +

∞∑
n=2

∫
· · ·
∫

0<u1<···<un≤t

W (u1−)X(du1) · · ·X(dun)

=

∞∑
n=1

∫
· · ·
∫

0<u1<···<un≤t

W (u1−)X(du1) · · ·X(dun)

as claimed. Now suppose Z satis�es the equation

Z(t) = W (t) +

∫ t

0
Z(s−)X(ds).

Then in particular, Z(0) = W (0). Letting Y (t) = Z(t)−W (t), we then get Y (0, t) =
Z(t)−W (t) and

Y (0, t) =

∫ t

0
Z(s−)X(ds) =

∫ t

0
W (s−)X(ds) +

∫ t

0
Y (0, s−)X(ds).
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Applying this identity iteratively, we obtain

Y (0, t) =

∫ t

0

(
W (s1−) +

∫ s1−

0
(W (s2−) + Y (0, s2−))X(ds2)

)
X(ds1)

=

∫ t

0
W (s1−)X(ds1) +

∫ t

0

∫ s1−

0
W (s2−) +

∫ s2−

0
(W (s3−) + Y (0, s3−))X(ds3)X(ds2)X(ds1)

= · · ·

=
∞∑
n=1

∫
· · ·
∫

0<u1<···<un≤t

W (u1−)X(du1) · · ·X(dun) =

∫ t

0
W (s−)X(ds) T

(s,t]

(I +X(du)).

We conclude that

Z(t) = W (t) +

∫ t

0
W (s−)X(ds) T

(s,t]

(I +X(du)).

Conversely, suppose this identity holds. Then

Z(t) = W (t) +
∞∑
n=1

∫
· · ·
∫

0<u1<···<un≤t

W (u1−)X(du1) · · ·X(dun).

We can now apply a technique very similar to the one in the proof of Theorem 3.8.
We have for n ≥ 1 that∫

· · ·
∫

0<u1<···<un+1≤t

W (u1−)X(du1) · · ·X(dun+1) =

∫ t

0

∫
· · ·
∫

0<u1<···<un<s

W (u1−)X(du1) · · ·X(dun)X(ds)

and so

Z(t) = W (t) +

∫ t

0
W (s−) +

 ∞∑
n=1

∫
· · ·
∫

0<u1<···<un<s

W (u1−)X(du1) · · ·X(dun)

X(ds)

= W (t) +

∫ t

0
Z(s−)X(ds)

as desired. It only remains to verify the alternate expression for Z, namely

Z(t) = W (0) T
(0,t]

(I +X(ds)) +

∫ t

0
W (ds) T

(s,t]

(I +X(du)).

De�ning

Y (s, t) := T
(s,t]

(I +X(du)),
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the backward equation yields the dynamics Y (ds, t) = −X(ds)Y (s, t). Hence, ap-
plying the backward equation and integration by parts, we have

Z(t) = W (t) +

∫ t

0
W (s−)X(ds) T

(s,t]

(I +X(du)) = W (t)−
∫ t

0
W (s−)Y (ds, t)

= W (0) T
(0,t]

(I +X(ds)) +

∫ t

0
W (ds) T

(s,t]

(I +X(du)),

which serves to complete the proof. �

The following result is essential in proving that the product integral is continuous in
the supremum norm.

Theorem 3.10 (Duhamel's equation). For matrix valued measures X1 and X2,
the following identity holds:

T
(s,t]

(I+X1(du))−T
(s,t]

(I+X2(dx)) =

∫ t

s T
(s,u]

(I+X1(du))(X1(du)−X2(du)) T
(u,t]

(I+X2(dx)).

Proof. Consider the measure X
(n,m)
1,2 on Rn+m

+ de�ned according to

X
(n,m)
1,2 (A1 × · · · ×An ×B1 × · · · ×Bm) = X1(A1) · · ·X1(An)X2(B1) · · ·X2(Bm)

for Borel sets A1, ..., An, B1, ..., Bm. Now apply Fubini's theorem to obtain

X
(n,m)
1,2 (U((s, t];n+m)) =

∫ t

s
X

(n−1)
1 (U((s, u);n− 1))X1(du)X

(m)
2 (U((u, t];m))

=

∫ t

s
X

(n)
1 (U((s, u);n))X2(du)X

(m−1)
2 (U((u, t];m− 1))

Summing over n ≥ 1 and m ≥ 1, we have∫ t

s T
(s,u)

(I +X1(dx))X1(du)

T
(u,t]

(I +X2(dx))− I


=

∫ t

s

T
(s,u)

(I +X1(dx))− I

X2(du) T
(u,t]

(I +X2(dx)).

Rearranging, this identity becomes∫ t

s T(s,u)

(I +X1(du))(X1(du)−X2(du)) T
(s,t]

(I +X2(dx))

=

∫ t

s T
(s,u)

(I +X1(dx))X1(du)−
∫ t

s
X2(du) T

(u,t]

(I +X2(dx)).

Applying both the forward and backward equations, the desired result follows. �
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So far we have worked on an interval (0, T ] with T = ∞ a possibility. We now
restrict the setting to a bounded interval, T < ∞. Recall that for a matrix A, we
de�ne the norm |A| by |A| = maxk

∑
j |akj |.

De�nition 3.11. Let α denote an interval function. We de�ne the variation norm
‖α‖v of α to be the variation of α over (0, T ], that is,

‖α‖v = |α|(0, T ].

The supremum norm ‖α‖∞ is de�ned by

sup
0≤s≤t≤T

|α(s, t)|.

Let H and K denote càdlàg matrix functions of bounded variation. Recall the
integration by parts formula

H(t)K(t)−H(s)K(s) =

∫ t

s
H−(dK) +

∫ t

s
(dH)K.

If one of H orK is not of bounded variation, we use this formula to de�ne integration
with respect to this function. For example, ifH is not of bounded variation, we de�ne∫ t

s
(dH)K = H(t)K(t)−H(s)K(s)−

∫ t

s
H−(dK). (1)

Note that we may considerH as an interval function by lettingH(s, t) = H(t)−H(s).
We then obtain the following helpful result (Lemma 5 in Gill and Johansen [22]).

Lemma 3.12. Let H,K and U be càdlàg matrix functions with K and U of bounded
variation. H need not have bounded variation. Then∥∥∥∥∫ (dH)K

∥∥∥∥
∞
≤ 2‖H‖∞‖K‖v (2)∥∥∥∥∫ U(dH)

∥∥∥∥
∞
≤ 2‖H‖∞‖U‖v (3)∥∥∥∥∫ U(dH)K

∥∥∥∥
∞
≤ 4‖H‖∞‖U‖v‖K‖v. (4)

Proof. From equation (1), we get∣∣∣∣∫ (dH)K

∣∣∣∣ ≤ ‖HK‖∞ + ‖H‖∞‖K‖v ≤ 2‖H‖∞‖K‖v

by using that the variation norm is larger than the supremum norm. This proves
the �rst assertion. The second assertion follows by applying an analogous argument
to ∫

U(dH) = (UH)(0, T )−
∫

(dU)H−.

As for the �nal result, use integration by parts, d(HK) = (dH)K +H−(dK), to get∫
U(dH)K =

∫
U(d(HK))−

∫
UH−(dK).

Now an application of the �rst two inequalities �nishes the proof. �
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Remark 3.13. It is not di�cult to show a sharpening of the inequality∥∥∥∥∫ U(dH)K

∥∥∥∥
∞
≤ 4‖H‖∞‖U‖v‖K‖v.

Indeed, applying integration by parts twice instead of only once, we get∫
U(dH)K = (UHK)(0, T )−

∫
(dU)(HK)− −

∫
UH−(dK),

and all integrators are of �nite variation, so we get∥∥∥∥∫ U(dH)K

∥∥∥∥ ≤ ‖UHK‖∞ + ‖U‖v‖HK‖∞ + ‖UH‖∞‖K‖v ≤ 3‖H‖∞‖U‖v‖K‖v.

◦

We now have the tools to prove continuity of the product integral in the supremum
norm.

Theorem 3.14. Let {α(n)}n be a sequence of additive interval functions on (0, T ]
satisfying

‖α(n) − α‖∞ → 0 as n→∞ and lim sup
n→∞

‖α(n)‖v <∞

for some interval function α. Then α is also additive and of bounded variation, and
we have ∥∥∥∥T(I + α(n)(dx))−T(I + α(dx))

∥∥∥∥
∞
→ 0 as n→∞.

Proof. Introduce the notation µ = P(I + α(dx)), µ(n) = P(I + α(n)(dx)). From
Duhamel's equation and the previous lemma, we get

‖µ(n) − µ‖∞ =

∥∥∥∥∥∥∥
∫ T

0 T
(0,u)

(I + α(n)(dx))(α(n)(du)− α(du)) T
(u,T )

(I + α(dx))

∥∥∥∥∥∥∥
∞

≤ 4‖α(n) − α‖∞‖µ(n)‖v‖µ‖v.

Now note that for any a, b ≥ 0, we have

1 + a+ b ≤ (1 + a)(1 + b) ≤ exp(a+ b).

From these inequalities, one deduces that for any non-negative interval function α0,
it holds that

1 + α0(s, t) ≤T
(s,t]

(1 + α0(dx)) ≤ exp(α0(s, t)). (5)

Using these inequalities and the forward equation, we get

‖µ(n)‖v ≤ ‖µ(n)‖∞‖α(n)‖v ≤ exp(‖α(n)‖∞)‖α(n)‖v
which is bounded by assumption. We have thus shown that ‖µ(n) − µ‖∞ → 0 as
n→∞ as desired.

�
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Remark 3.15. Already from the elementary exponential inequality (5) and Duhamel's
equation, it follows that the product integral is continuous in the variation norm
considered as a functional from the space of additive interval functions on a bounded
interval to the space of multiplicative interval functions. However, it turns out that
with respect to the supremum norm, the product integral is not only continuous,
but di�erentiable on compact intervals in a certain sense. We will not need this
latter result, so we refrain from providing further details. We instead refer to the
discussion following Theorem 7 in Gill and Johansen [22].

◦

3.2 Results from probability theory

In this subsection, we brie�y recall the fundamental notions of counting processes,
martingales and compensators. A thorough and concise reference is Cohen and
Elliott [14]. A more brief recap can be found in Andersen et al. [4] chapter II.2
to II.4. Fix a time interval I = [0, T ] or I = [0, T ) with 0 < T ≤ ∞ and a
�ltered probability space (Ω,F , {Ft}t∈I ,P). We assume that the usual conditions
(les conditions habituelles) hold, namely that the �ltration is right-continuous

Ft =
⋂
s>t

Fs,

and that the �ltration is complete, namely that for every A ⊆ B ∈ F with P(B) = 0,
we have A ∈ F0. Recall that a random variable τ : Ω → I is called a stopping time
if for every t, {τ ≤ t} ∈ Ft. A stochastic process X = {Xt}t∈I is simply a collection
of random variables indexed by I. X is called adapted to the �ltration {Ft}t∈I if
Xt is Ft-measurable for all t. One can think of X as a function in two variables,
namely ω ∈ Ω and t ∈ I. For �xed ω, we refer to t 7→ Xt(ω) as a sample path of
X. We call X càdlàg if every sample path of X is càdlàg. We de�ne the predictable
sigma-algebra by

Pre(F) = σ({{0} ×A : A ∈ F0} ∪ {(t, s]×A : A ∈ Ft, 0 ≤ t < s <∞}),

and X is called predictable if the map (t, ω) 7→ X(ω, t) is measurable with respect
to Pre(F). We think of a predictable process as a process whose value at time t is
known immediately before t. Examples of predictable processes include all processes
with left-continuous sample paths.

De�nition 3.16. A càdlàg stochastic process M = {Mt}t∈I is a martingale if

(i) M is adapted to {Ft}t∈I ,

(ii) E[|Mt|] <∞ for all t ∈ I and

(iii) E[Mt | Fs] = Ms a.s. for s ≤ t.
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If the equality in (iii) is replaced by ≥, we call M a submartingale. If we replace it
with ≤, we call M a supermartingale. A martingale M is called square-integrable if

sup
t∈I

E[M2
t ] <∞.

A deep result in probability theory is the Doob�Meyer decomposition theorem. More
than one version exists. For our purposes, the following version su�ces. A stochastic
process X is a local martingale (submartingale, supermartingale) if there exists a
sequence {Tn}n∈N of stopping times satisfying limn→∞ Tn = ∞ a.s. such that the
stopped processes XTn are martingales (submartingales, supermartingales).

Theorem 3.17 (Doob�Meyer decomposition). Let X be a right-continuous sub-
martingale. Then there exists a non-decreasing predictable process Λ with Λ0 = 0 a.s.
such that the process M = X −Λ is a local martingale. We call M the Doob�Meyer
decomposition of X, and we refer to Λ as the predictable compensator of X.

Proof. See section 9.2 in Cohen and Elliott [14]. �

In the following, we will not worry about the �local� part of the above result. In
most applications, one is allowed to assume that M is a true martingale.

De�nition 3.18. Let X be a submartingale with Doob�Meyer decomposition M =
X − Λ.

(i) The process Λ is called the (predictable) compensator of X.

(ii) If we can write

Λt =

∫ t

0
λsds

for all t where λ is a predictable process, λ is called the intensity process of X.

Example 3.19. Consider a homogeneous Poisson process N = {Nt}t≥0 with inten-
sity λ with the natural �ltration on the background space. Using that for s ≤ t, the
increment Nt − Ns is Poisson distributed with parameter λ(t − s) and that N has
independent increments, trivial calculations show that Λt = λt is the compensator
of N . In particular, the intensity process is constant and given by λ. ◦

Now consider a square integrable martingale M . One can then show that M2 is a
submartingale which satis�es conditions necessary to have a Doob�Meyer decompo-
sition.

De�nition 3.20. For a square integrable martingale M , we let 〈M〉 denote the
predictable compensator of M2 and call 〈M〉 the predictable variation process of M .

Example 3.21. Consider a standard Brownian motion W = {Wt}t≥0 and let the
�ltration on the background space be the natural �ltration generated by W . Using
that W has independent increments with Wt−Ws ∼ N (0, t− s) for s ≤ t, it is easy
to verify that 〈W 〉t = t. ◦
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Say we have a �nite variation square integrable martingale M and a predictable
process H. Let Λ be the predictable compensator of M . Under certain integrability
conditions, it follows that the predictable compensator of∫

HdN

is
∫
HdΛ. One can also show that the predictable variation process is given by〈∫

HdM

〉
=

∫
H2d〈M〉.

We now brie�y recall the notion of a counting process.

De�nition 3.22. (i) A univariate counting process N is a stochastic process
which is zero at time zero, càdlàg, non-decreasing, takes values in N0 ∪ {∞}
and with ∆Nt ∈ {0, 1} for all t ≥ 0.

(ii) A multivariate counting process N = (N1, ..., Nm) is a vector of univariate
counting processes with no two components jumping at the same time. That
is, ∆N j

t ∆Nk
t = 0 on {N j

t <∞, Nk
t <∞}.

Consider a multivariate counting process N = (N1, ..., Nm) with each N j having
intensity λj . One can then show (see Proposition II.4.1 in Andersen et al. [4]) that
for M j = N j −

∫
λ, we have

〈M j〉t =

∫ t

0
λj(s)ds.

Example 3.23. Let X be a non-negative random variable with density f with
respect to Lebesgue measure and distribution function F . Let S = 1 − F and
de�ne the hazard rate α by α = f/S. Consider the one-jump process N given by
Nt = 1{X≤t} and the natural �ltration Ft = σ(Ns : s ≤ t). One can show, see
example II.4.1 in Andersen et al. [4], that the predictable compensator of N is

Λt =

∫ t

0
Ysα(s)ds

where Ys = 1{X≥s}. In particular, the intensity process is Ysα(s). We will generalise
this example, when we turn to the topic of survival analysis in the next section. ◦

The last tool from probability theory that we will need is Lenglart's inequality. We
begin by stating and proving the inequality as presented in the paper Lenglart [44].
Afterwards we specialise to the case we will need. We adopt the convention X0− = 0
for any stochastic process X in the following.

De�nition 3.24. An adapted non-negative right-continuous process X is said to be
dominated by a predictable, non-decreasing, right-continuous process A with A0 = 0
if for every �nite stopping time τ , we have E[Xτ ] ≤ E[Aτ ].
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For a stochastic process X, let X∗ denote the process given by

X∗t = sup
s∈[0,t]

|Xs|.

Lemma 3.25. Let X be dominated by A. Then for any stopping time τ and every
η > 0, we have

P(X∗τ ≥ η) ≤ 1

η
E[Aτ ].

Proof. Let σ = inf{s ≤ τ ∧ n : Xs ≥ η} with the convention that σ = τ ∧ n if
{s ≤ τ ∧ n : Xs ≥ η} = ∅. Note that σ is a stopping time satisfying σ ≤ τ ∧ n. In
particular, σ is �nite, and we obtain the inequalities

E[Aτ ] ≥ E[Aσ] ≥ E[Xσ] ≥
∫
{X∗τ∧n>η}

XσdP ≥ ηP(X∗τ∧n ≥ η).

The �rst inequality is due to A being increasing, the second follows because A
dominates X, and the �nal inequality is a consequence of the de�nition of σ. We
have thus shown that P(X∗τ∧n ≥ η) ≤ 1

ηE[Aτ ] for every n ≥ 1. It follows that

P(X∗τ ≥ η) ≤ 1
ηE[Aτ ] and the proof is complete. �

Theorem 3.26 (Lenglart's inequality). Let X be a process dominated by A. For
every stopping time X and every η, δ > 0, we have

P(X∗τ ≥ η) ≤ 1

η
E[Aτ ∧ δ] + P(Aτ ≥ δ).

Proof. We show that for every predictable stopping time τ > 0 and for every η, δ > 0,
it holds that

P(X∗τ− ≥ η) ≤ 1

η
E[Aτ− ∧ δ] + P(Aτ− ≥ δ).

We �rst note that

P(X∗τ− ≥ η) = P(Aτ− < δ,X∗τ− ≥ η) + P(Aτ− ≥ δ,X∗τ− ≥ η)

≤ P(1{Aτ−<δ}X
∗
τ− ≥ η) + P(Aτ− ≥ δ).

Now let σ = inf{t : At ≥ δ}. We claim that σ is a predictable stopping time. Indeed,
we recognise σ as the debut of the predictable set {At ≥ δ}. The claim then follows
from Lemma 7.3.7 in Cohen and Elliott [14]1. Note that σ > 0 and hence σ ∧ τ > 0
as well. Furthermore, σ ∧ τ is predictable. We claim that

1{Aτ−<δ}X
∗
τ− ≤ X∗(τ∧σ)−.

Let ω satisfy Aτ−(ω) < δ. Then τ(ω) ≤ σ(ω) and we obtain an equality. If ω
satis�es Aτ−(ω) ≥ δ, the left hand side is zero, and the right hand side is always at
least zero by the convention X0− = 0. Consequently,

P(X∗τ− ≥ η) ≤ P(X∗(τ∧σ)− ≥ η) + P(Aτ− ≥ δ). (6)

1We also refer to Cohen and Elliott [14] for general background on debuts of sets.
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Now choose a sequence of stopping times {σn}n≥1 such that σn ↑ τ ∧ σ and so that
σn < σ ∧ τ a.s. for all n. Note that for every ε ∈ (0, η), we have

{X∗(τ∧σ)− ≥ η} ⊆
∞⋂
n=1

{X∗σn ≥ η − ε}.

Using continuity from above, the previous lemma and monotone convergence yields

P(X∗(τ∧σ)− ≥ η) ≤ P

( ∞⋂
n=1

{X∗σn ≥ η − ε}

)
= lim

n→∞
P(X∗σn ≥ η − ε)

≤ lim
n→∞

1

η − ε
E[Aσn ] ≤ 1

η − ε
E[A(τ∧σ)−].

As ε ∈ (0, η) was arbitrary, P(X∗(τ∧σ)− ≥ η) ≤ 1
ηE[A(τ∧σ)−]. σ is the �rst time A

passes δ, so A(τ∧σ)− ≤ Aτ− ∧ δ. From (6), we obtain

P(X∗τ− ≥ η) ≤ 1

η
E[Aτ− ∧ δ] + P(Aτ− ≥ δ).

It only remains to use this fact to prove the theorem. Simply apply the inequality
with X and A replaced by the stopped processes Xτ and Aτ and replace τ by the
constant (and hence predictable) stopping time ∞. �

The following corollary is the version that we will use.

Corollary 3.27. Let M be a square integrable martingale with predictable variation
process 〈M〉. For any η > 0 and δ > 0, it holds that

P( sup
0≤s≤t

|Ms| > η) ≤ δ

η2
+ P(〈M〉t > δ).

Proof. Simply note that

P( sup
0≤s≤t

|Ms| > η) = P((M2)∗t > η2)

and that 〈M〉 satis�es all the conditions for dominating M2. Now apply Lenglart's
inequality as stated in the theorem above. �
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4 Survival analysis

�On a long enough timeline, the survival rate for everyone drops to zero.�
- Narrator, Fight Club

4.1 Setup and notation

Let T ◦ denote a non-negative random variable with distribution function F . Let
T ◦1 , ..., T

◦
n be iid copies of T ◦. The goal of survival analysis is to estimate F or,

equivalently, the survival function S = 1 − F in the presence of censoring. In this
project, we consider right-censoring. To this end, let R1, ..., Rn be iid censoring
variables with values in (0,∞]. The observed data consists of T = T ◦ ∧ R and
δ = 1{T=T ◦} = 1{T ◦≤R}. The goal can then be formulated as estimating F based
on the sample (T1, δ1), ..., (Tn, δn). Classical estimators of F such as the empirical
distribution function

F̂n(t) =
1

n

n∑
i=1

1{T ◦i ≤t}

are no longer useful since we do not observe the T ◦i . Replacing T
◦
i with T does not

work either, since this would be a consistent estimator (by the strong law of large
numbers) of P(T ◦ ∧ R ≤ t) and not P(T ◦ ≤ t) (unless censoring is not present).
The key to estimating F in the presence of censoring is to work with (accumulated)
hazard rates.

De�nition 4.1. For a distribution function F , we de�ne the accumulated hazard/in-
tensity A of F as

A(t) =

∫ t

0

1

S(s−)
F (ds).

Note that in the case where F admits a density f , the accumulated hazard is

A(t) =

∫ t

0

f(s)

S(s)
ds,

and we refer to α(t) = f(t)/S(t) as the hazard rate. Note that we can recover F
from A by

F (t) = 1− exp(−A(t)) or equivalently, S(t) = exp(−A(t)).

Using the change of variable formula for càdlàg functions of �nite variation, we see
that

S(t) = T
(0,t]

(1 +A(ds)),

and in the case with A(t) =
∫ t

0 α(s)ds, we may write

S(t) = T
(0,t]

(1 + α(s)ds).
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In order to do estimation, we need further assumptions on our data. The following
assumption, which we refer to as entirely random right-censoring, su�ces for our
purposes.

Assumption 4.2. We assume that T ◦ and R are independent.

Before stating an estimator of A, we discuss the example of a censored survival time.
Assume T ◦ has hazard rate α. Let N◦ be the counting process N◦t = 1{T ◦≤t} count-
ing the number of actual deaths with intensity process λ◦ given by λ◦t = 1{T ◦≥t}α(t).
We do not observe this counting process however, but rather the process N given by

Nt = 1{T≤t}1{δ=1} =

∫ t

0
1{R≥s}N

◦(ds)

Under the assumption of entirely random right-censoring, one can show (see example
III.2.5 in Andersen et al. [4]) that the intensity process λ of N is given by

λt = 1{R≥t}λ
◦
t = 1{R≥t}1{T ◦≥t}α(t) = 1{T≥t}α(t).

In particular, the intensity process is of the same form as without censoring. This
is one reason why hazard rate modelling is so mathematically appealing. Another
reason is that the form of the intensity is preserved under aggregation. Indeed, from
the iid sample (T1, δ1), ..., (Tn, δn) with corresponding counting processes N1, ..., Nn,
de�ne the aggregated counting process

N
(n)
t =

n∑
i=1

N i
t .

Then N (n) has intensity process given by λ
(n)
t = α(t)Y

(n)
t where

Y
(n)
t =

n∑
i=1

1{Ti≥t}

can be interpreted as the number of individuals at risk at time t. The form of the
intensity process shows up often enough to deserve a name.

De�nition 4.3. Consider a multivariate counting process N = (N1, ..., Nm). We
say thatN satis�es themultiplicative intensity model if each Nk has intensity process
λk of the form

λkt = αk(t)Y k
t ,

where αi is a non-negative deterministic function and Y k is a non-negative pre-
dictable process with 1{Y kt >0}/Y

k
t locally bounded.

4.2 Nonparametric estimation - The Nelson�Aalen estimator and
its properties

In this subsection, we discuss nonparametric estimation methods in survival analysis
with a particular emphasis on the Nelson�Aalen and Kaplan�Meyer estimators.
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De�nition 4.4. Consider a counting process N satisfying the multiplicative inten-
sity model. De�ne Jt = 1{Yt>0}.

(i) We de�ne the Nelson�Aalen estimator of A as

Ât =

∫ t

0

Js
Ys
N(ds).

(ii) In the survival setup, we de�ne the Kaplan�Meyer estimator of the survival
function S as

Ŝ(t) = T
(0,t]

(1− Â(ds)).

Note that the Nelson�Aalen estimator is a step function. At the j'th jump time τj
of N , the jump is of size 1/Yτj . Hence we can write

Ŝ(t) =
∏
s∈(0,t]

(
1− ∆Ns

Ys

)

by remark 3.4. The Nelson�Aalen estimator can heuristically be derived as follows.
Consider the martingale

Mt = Nt −
∫ t

0
α(s)Ysds.

Written using dynamics, this equation reads

M(dt) = N(dt)− α(t)Ytdt.

Dividing by Yt, we get

α(t)dt =
1

Yt
N(dt)− 1

Yt
M(dt).

The martingale term on the right hand side can be considered as noise, so that we
informally have ∫ t

0
α(s)ds ≈

∫ t

0

1

Ys
N(ds).

It is possible that Ys is zero, so we introduce J as in the de�nition and obtain the
estimator

Ât =

∫ t

0

Js
Ys
N(ds)

with the convention that 0/0 = 0. It is convenient to introduce the process

A∗t =

∫ t

0
α(s)Jsds
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which we claim is the predictable compensator of the Nelson�Aalen estimator. Since
Y is a càglàg process, A∗ is seen to be predictable. Furthermore,

Ât −A∗t =

∫ t

0

Js
Ys
N(ds)−

∫ t

0

Js
Ys
α(s)Ysds

=

∫ t

0

Js
Ys

(N(ds)− α(s)Ysds) =

∫ t

0

Js
Ys
M(ds)

which is a martingale with mean zero. Thus A∗ is indeed the compensator. Hence

E[Ât] = E[A∗t ] =

∫ t

0
α(s)E[Js]ds =

∫ t

0
α(s)P(Ys > 0)ds

=

∫ t

0
α(s)(1− P(Ys = 0))ds = At −

∫ t

0
α(s)P(Ys = 0)ds.

This shows that the Nelson�Aalen estimator is biased downward. However, this bias
is negligible if P(Ys = 0) is close to zero, which is often the case for studies with many
observations. See section IV.1.1 in Andersen et al. [4] for more basic properties of the
Nelson�Aalen estimator. We conclude this section by proving that the Nelson�Aalen
and Kaplan�Meyer estimators are uniformly consistent on compact intervals under
some mild assumptions.

Theorem 4.5. Let a sequence of counting processes {Nn}n≥1 be given, each Nn

satisfying the multiplicative intensity model with λnt = α(t)Y n
t . Let Jnt = 1{Y nt >0}

for n ≥ 1. Assume that for n→∞,

(i) ∫ t

0

Jns
Y n
s

α(s)ds
P−→ 0 and

(ii) ∫ t

0
(1− Jns )α(s)ds

P−→ 0.

Then as n→∞,

sup
s∈[0,t]

|Âns −As|
P−→ 0.

Proof. From the discussion earlier, the predictable variation process of the martingale
Mn
t = Nn

t −
∫ t

0 α(s)Y n
s ds is

〈Mn〉t =

∫ t

0
α(s)Y n

s ds.

Hence the predictable variation process of Â−A∗ is given by

〈Ân −A∗n〉t =

∫ t

0

(Jns )2

(Y n
s )2

α(s)Y n
s ds =

∫ t

0

Jns
Y n
s

α(s)ds.
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By the form of Lenglart's inequality in Corollary 3.27, we have for every η > 0 and
δ > 0 that

P

(
sup
s∈[0,t]

|Âns −A∗ns | > η

)
≤ δ

η2
+ P(〈Ân −A∗〉t > δ)

=
δ

η2
+ P

(∫ t

0
α(s)

Jns
Y n
s

ds > δ

)
.

It follows that
sup
s∈[0,t]

|Âns −A∗ns |
P−→ 0

using assumption (i). Now apply the triangle inequality to get

sup
s∈[0,t]

|Âns −As| ≤ sup
s∈[0,t]

|Âns −A∗ns |+ sup
s∈[0,t]

|A∗ns −As|

≤ sup
s∈[0,t]

|Âns −A∗ns |+
∫ t

0
α(s)(1− Jns )ds

and from the above limit result and assumption (ii), the proof is complete. �

We can now apply the product integral machinery developed in the beginning of this
section to give a quick and elegant proof of uniform consistency on compact intervals
for the Kaplan�Meyer estimator.

Corollary 4.6. Let {Nn}n≥1 be a sequence of counting processes in the survival
setting. Let t > 0 satisfy S(t) > 0. Under the assumptions (i) and (ii) in the above
theorem, we have

sup
s∈[0,t]

|Ŝn(s)− S(s)| P−→ 0

for n→∞.

Proof. Recall that

Ŝn(t) = T
(0,t]

(1− Ân(ds)) and S(t) = T
(0,t]

(1−A(ds)).

From the previous theorem, Ân converges in probability to A in the supremum norm.
As Ân is non-decreasing,

‖Ân‖v = Ânt − Ân0
P−→ At −A0 <∞,

so by continuity of the product integral in the supremum norm, Theorem 3.14, and
the continuous mapping theorem, the result follows. �
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4.3 Parametric estimation

4.3.1 The case without covariates

We now present a parametric approach to survival analysis. While the nonpara-
metric approach presented above is very popular in biostatistics, parametric meth-
ods are often used in insurance for multistate modelling, and we later compare the
performance of parametric methods with random survival forests in a simple life
insurance simulation study. We follow the exposition in the book Aalen et al. [3].
For the remainder of this section, we assume that we are given counting processes
N1, N2, ..., Nn with intensity processes

λit = αi(t;θ)Y i
t

where θ = (θ1, ..., θq) is a q-dimensional parameter. Later we assume that α also
depends on a vector of covariates, but for now, we consider the situation without.
Some classical examples of survival time distributions include the following.

Example 4.7. The exponential distribution. Here T ◦ has density f(t;β) = βe−βt

for β > 0 and constant intensity α(t;β) = β. We recall that the interpretation of the
hazard rate is that for a very small dt, α(t;β)dt approximately equals the probability
of dying in (t, t + dt] given that the individual is alive at time t. Hence a constant
hazard rate implies that the probability of dying in the near future for a 20 year old
is the same as for an 80 year old. This makes the exponential distribution un�t for
many applications of survival analysis. Nevertheless, it constitutes a mathematically
tractable example. ◦

Example 4.8. The Weibull distribution. Here the density of T ◦ is f(t;β, γ) =
βtγ−1e−βt

γ/γ with intensity α(t;β, γ) = βtγ−1, β, γ > 0. Here the behaviour of the
hazard rate di�ers depending on the value of γ. For γ > 1, the hazard is increasing
while it is decreasing for γ < 1. The case γ = 1 is simply the exponential distribution.
◦

Example 4.9. The Gompertz�Makeham distribution has hazard rate α(t;β, γ, ρ) =
β + γeρt for parameters β, γ, ρ > 0. The survival function is computed to be

S(t;β, γ, ρ) = exp

(
−
∫ t

0
α(s;β, γ, ρ)ds

)
= exp

(
−βt− γ

ρ
(eρt − 1)

)
which yields the density

f(t;β, γ, ρ) =
(
β + γeρt

)
exp

(
−βt− γ

ρ
(eρt − 1)

)
.

◦
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In order to do estimation in the parametric setup, we need a likelihood. We present
the (somewhat informal) derivation shown in section 3.2 of the book Kalb�eisch and
Prentice [38]. We start by recalling that right-censoring is entirely random, R ⊥⊥ T ◦.
Given independent data (T1, δ1), ..., (Tn, δn), assume Ti has distribution function Fi
and density fi, while Ri has distribution function Gi with density gi. Then

P(Ti ∈ (t, t+ dt], δi = 1;θ) = P(T ◦i ∈ (t, t+ dt], Ri > t;θ) = Gi(t;θ)fi(t;θ)dt

and

P(Ti ∈ (t, t+ dt], δi = 0;θ) = P(Ri ∈ (t, t+ dt], T ◦i > t;θ) = F i(t;θ)gi(t;θ)dt.

If censoring is noninformative, meaning that the distribution of the censoring vari-
ables Ri do not depend on θ, and using that the pairs (Ti, δi) are independent, the
likelihood becomes

L(θ) ∝
n∏
i=1

fi(Ti;θ)δiF i(Ti;θ)1−δi .

In the case where censoring is informative, L(θ) is called a partial likelihood. We
assume noninformative censoring and therefore consider the above expression as a
full likelihood. The likelihood above has the following interpretation. If δi = 1 so
that the i'th subject is known to have died at Ti, the subject contributes fi(Ti;θ)
to the likelihood. If δi = 0, we only know that the subject was alive at time Ti, so
the contribution is F i(Ti;θ). In order to do estimation, we rewrite the likelihood in
terms of the hazard rates λi and counting processes N i. As before, let

N
(n)
t =

n∑
i=1

N i
t and λ

(n)
t =

n∑
i=1

λit,

and note that

fi(Ti;θ) = αi(Ti;θ) exp

(
−
∫ Ti

0
αi(t;θ)dt

)
, F i(Ti;θ) = exp

(
−
∫ Ti

0
αi(t;θ)dt

)
.

Assuming that all data is observed over the time horizon [0, τ ], we have

L(θ) =

n∏
i=1

αi(Ti;θ)δi exp

(
−
∫ Ti

0
αi(t;θ)dt

)

=

n∏
i=1

∏
0<t≤τ

(αi(t;θY
i
t )∆N i

t exp

(
−
∫ τ

0
αi(t;θ)Y i

t dt

)

=

 n∏
i=1

∏
0<t≤τ

λit(θ)∆N i
t

 exp

(
−
∫ τ

0
λ

(n)
t (θ)dt

)
In practice, one has to furthermore assume that the T ◦1 , ..., T

◦
n are iid. This simpli�es

the likelihood signi�cantly in concrete examples. The following de�nition summarises
the important quantities in estimation.
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De�nition 4.10. Given survival data (T1, δ1), ..., (Tn, δn) where the true survival
times Ti have intensity processes of the form λit = αi(t; θ)Y

i
t , we de�ne the likelihood

by

L(θ) =

 n∏
i=1

∏
0<t≤τ

λit(θ)∆N i
t

 exp

(
−
∫ τ

0
λ

(n)
t (θ)dt

)
.

The log-likelihood is given by

`(θ) = logL(θ) =
n∑
i=1

∫ τ

0
log λit(θ)N i(dt)−

∫ τ

0
λ

(n)
t (θ)dt.

The vector of score functions, U(θ) = (U1(θ), ..., Uq(θ)), is de�ned by (assuming
that we are allowed to interchange integration and di�erentiation)

Uj(θ) =
∂

∂θj
`(θ) =

n∑
i=1

∫ τ

0

∂

∂θj
log λit(θ)N i(dt)−

∫ τ

0

∂

∂θj
λ

(n)
t (θ)dt.

The observed information matrix I(θ) is the q × q-matrix with entries

I(θ)ij = − ∂2

∂θi∂θj
`(θ),

and the expected information matrix J(θ) is the q × q-matrix with entries

J(θ)jk =
n∑
i=1

∫ τ

0

(
∂

∂θj
log λit(θ)

)(
∂

∂θk
log λit(θ)

)
N i(dt).

We say that θ̂ is a maximal likelihood estimator if θ̂ is a (local) maximum of the
log-likelihood `(θ).

Example 4.11 (Exponential distribution). If the T ◦1 , ..., T
◦
n are exponentially

distributed with parameter β > 0, the log-likelihood becomes

`(β) =
n∑
i=1

∫ τ

0
log Y i

t N
i(dt) + log β

n∑
i=1

∫ τ

0
N i(dt)− β

∫ τ

0
Y

(n)
t dt

=
n∑
i=1

∫ τ

0
log Y i

t N
i(dt) + (log β)N (n)

τ − βR(τ)

where

R(τ) =

∫ τ

0
Y

(n)
t dt =

n∑
i=1

∫ Ti

0
dt =

n∑
i=1

Ti and N (n)
τ =

n∑
i=1

N i
τ

are the total exposure and occurence over the course of the experiment, respectively.
The score function is

U(β) =
N

(n)
τ

β
−R(τ),

36



and the observed information is

I(β) =
N

(n)
τ

β2

which is strictly positive. It follows that the MLE is unique and equal to

β̂ =
N

(n)
τ

R(τ)
.

Note that the MLE is the total number of occurences divided by the total exposure.
β̂ thus has the form of an occurence/exposure rate. We will later see more examples
of O/E rates in estimation for parametric models. We also remark that the observed
and expected information coincide in this example. ◦

Example 4.12 (Gompertz�Makeham distribution). As a more complicated
example in the parametric framework, consider the Gompertz�Makeham model. The
log-likelihood is

`(β) =
n∑
i=1

∫ τ

0
log Y i

t N
i(dt) +

n∑
i=1

∫ τ

0
log(β + γeρt)N i(dt)

− β
∫ τ

0
Y

(n)
t dt− γ

∫ τ

0
eρtY

(n)
t dt,

from which we can compute the score vector U(β, γ, ρ) = (U1(β, γ, ρ), U2(β, γ, ρ), U3(β, γ, ρ))
to be

U1(β, γ, ρ) =

∫ τ

0

1

β + γeρt
N (n)(dt)−

∫ τ

0
Y

(n)
t dt

=
n∑
i=1

(
δi

β + γeρTi
− Ti

)
U2(β, γ, ρ) =

∫ τ

0

eρt

β + γeρt
N (n)(dt)−

∫ τ

0
eρtY

(n)
t dt

=

n∑
i=1

(
δie

ρTi

β + γeρTi
− eρTi − 1

ρ

)
U3(β, γ, ρ) =

∫ τ

0

γteρt

β + γeρt
N (n)(dt)− γ

∫ τ

0
teρtY

(n)
t dt

=
n∑
i=1

(
γδiTie

ρTi

β + γeρTi
− γ

(
Tie

ρTi

ρ
− eρTi − 1

ρ2

))
.

In this case, one has to solve numerically for an MLE. ◦
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Example 4.13 (Piecewise constant hazards). If one does not want to pose strong
parametric assumptions on α, a possible approach is to assume that α is piecewise
constant. Consider a partition 0 = t0 < t1 < · · · < tK = τ , then we assume

α(t;θ) =

K∑
k=1

θkIk(t)

with θ = (θ1, ..., θK) and Ik(t) = 1(tk−1,tk](t). We can compute the score functions
directly,

Uj(θ) =
n∑
i=1

∫ τ

0

∂

∂θj

(
log Y i

t + log

(
K∑
k=1

θkIk(t)

))
N i(dt)−

n∑
i=1

∫ τ

0

∂

∂θj
Y i
t

K∑
k=1

θkIk(t)dt

=
n∑
i=1

∫ τ

0

Ij(t)∑K
k=1 θkIk(t)

N i(dt)−
n∑
i=1

∫ τ

0
Ij(t)Y

i
t dt

=
1

θj

∫ τ

0
Ij(t)N

(n)(dt)−
∫ τ

0
Ij(t)Y

(n)
t dt.

De�ning the quantities

Oj =

∫ τ

0
Ij(t)N

(n)(dt) and Rj =

∫ τ

0
Ij(t)Y

(n)
t dt,

we see that Uj(θ) = Oj/θj−Rj where Oj is the total number of events in the interval
(tj−1, tj ], and Rj is the total exposure in the interval. The observed information
matrix is

I(θ) =


O1

θ21
O2

θ22
. . .

OK
θ2K


which is clearly positive de�nite. Hence the MLE for θj is again an occurence/expo-
sure rate

θ̂j =
Oj
Rj
.

◦

4.3.2 Including covariates - Poisson regression

We now consider the case where covariates are included. Hence we assume that the
intensities λt are of the form

λit = α(t | Xi)Y
i
t

where Xi as usual denotes the vector of covariates for the i'th observation. We will
specialise further and consider intensities of the form

λit(θ,β) = α0(t;θ)Y i
t r(β,Xi).
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We interpret α0 as a baseline hazard function common for all individuals in the study
while r describes the e�ect of the covariates. We refer to r as a relative risk function.
A popular choice of r is

r(β,X) = exp(βTX)

where it is assumed that the dimensions ofX and β are compatible. With this choice
of relative risk function, and if one assumes no further structure on α0, one obtains
the famous Cox proportional hazards model, see the original paper by Cox, Cox [16].
The tremendous impact of this model is summarised in the article Kalb�eisch and
Schaubel [39]. In our exposition, we will to start with make no assumption on the
form of r, and instead of leaving α0 unspeci�ed as in the Cox model, we will assume
that α0 is piecewise constant,

α0(t;θ) =

K∑
k=1

θkIk(t)

with Ik de�ned as in the example on piecewise constant hazards above. Now consider
the total number of events for individual i in the k'th subinterval,

Oik =

∫ τ

0
Ik(t)N

i(dt)

as well as the total exposure for individual i in the subinterval,

Rik =

∫ τ

0
Ik(t)Y

i
t dt.

Using these quantities, we can rewrite the likelihood

L(θ,β) =

n∏
i=1

∏
0<t≤τ

λit(θ,β)∆N i
t exp

(
−
∫ τ

0
λ

(n)
t (θ,β)dt

)
as

L(θ,β) =
n∏
i=1

K∏
k=1

(θkr(β,Xi))
Oik exp

(
−

n∑
i=1

K∑
k=1

θkr(β,Xi)Rik

)

=

K∏
k=1

n∏
i=1

(
(θkr(β,Xi))

Oik exp(−θkr(β,Xi)Rik)
)

by simply regrouping the terms in the inner product over t according to which
time interval the jump occurs in. We see that this likelihood is proportional to the
likelihood one would obtain by assuming that the Oik are independent and Poisson
distributed with parameters

µik = θkr(β,Xi)Rik.

This observation is the reason why this model is called a Poisson regression model,
even though Oik is not assumed to be Poisson, and Rik is not a �xed quantity.
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Nevertheless, this observation is extremely useful for computational purposes since
it allows us to use e�cient software for estimation in generalised linear models when
r(β,X) = exp(βTX). To be explicit, we would then have

µik = exp(log θk + βTXi + logRik).

Hence we can simply, for each k = 1, ...,K, �t a Poisson GLM to the data Oik,
i = 1, ..., n with logRik as o�sets and log θk as the intercept.

We wrap up our discussion on parametric estimation by mentioning that several
asymptotic results exist for the maximum likelihood estimator θ̂. Under some quite
technical regularity assumptions (see Condition VI.1.1 in Andersen et al. [4]), one
can show that with probability tending to one, the score equation U(θ) = 0 has

a solution θ̂ with θ̂
P−→ θ0. Under the same assumptions, asymptotic normality

can also be established. A thourough discussion on large sample properties in the
parametric regime may be found in chapter IV.1.2 of Andersen et al. [4].

4.4 More on the Gompertz�Makeham distribution

When we later do a life insurance related simulation study, we simulate from a
Gompertz�Makeham distribution. This particular distribution was chosen since it
strikes a good balance between complexity and tractability. We recall from earlier
that the intensity is given by

α(t;β, γ, ρ) = β + γeρt

which yields the survival function

S(t;β, γ, ρ) = exp

(
−βt− γ

ρ
(eρt − 1)

)
.

The Gompertz�Makeham distribution is important for historical reasons. The mor-
tality table for males in 1982 used by Danish companies (known as G82M) is obtained
by using a Gompertz�Makeham mortality model where

β = 5 · 10−4, γ = 7.5858 · 10−5 and ρ = log(1.09144),

see the discussion in section 2.1 in Furrer [19].
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Figure 8: Three mortality curves for males for ages 60 to 90 taken from Furrer
[19]. Since 2011, Danish life insurance companies have had to use the so-called
Levetidsmodel from the Danish Financial Supervisory Authority (FSA). The FSA
mortality curves for males from 2014 and 2019 are plotted along with the G82M
model. Lifetimes have clearly improved since 1982.

Looking again at the intensity α(t;β, γ, ρ) = β + γeρt, we see that in this model,
mortality is modelled as an exponential function of age. More precisely, β is an
age-independent component which attempts to capture all e�ects on mortality not
related to age. γ is a baseline hazard at age zero, while ρ determines how fast mortal-
ity increases with age. An exponential model for the hazard rate was �rst proposed
by Benjamin Gompertz, see Gompertz [23], which is why γeρt is sometimes referred
to as the Gompertz term. William M. Makeham later proposed adding the age-
independent term β, see Makeham [47, 48, 49]. For this reason, β is sometimes
referred to as the Makeham term. For a modern summary of results and properties
of the Gompertz�Makeham distribution, we refer to Castellares et al. [13].

For the rest of this subsection, we supply the details needed in order to do e�cient
simulation from the Gompertz�Makeham distribution. We are interested in being
able to simulate a portfolio of policyholders. These individuals will of course have
di�erent ages when the contract is initiated. Let T be the lifetime of a policyholder,
assumed to follow a Gompertz�Makeham distribution, and let x be the age at time
zero. We are then interested in the residual lifetime Tx := T − x | T > x. The
survival function Sx of Tx is

Sx(t) = P(T − x > t | T > x) =
P(T > t+ x)

P(T > x)
=
S(t+ x)

S(x)

with S the survival function of T . Hence

Sx(t) =
exp

(
−
∫ t+x

0 α(s;β, γ, ρ)ds
)

exp
(
−
∫ x

0 α(s;β, γ, ρ)ds
) = exp

(
−
∫ t+x

x
α(s;β, γ, ρ)ds

)
,
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and an elementary computation yields

Sx(t) = exp

(
−βt− γ

ρ
(eρ(t+x) − eρx)

)
.

The goal is to simulate from this function using the inverse transform method. Recall
that if we want to simulate from the distribution with distribution function F , we
simulate U ∼ U(0, 1) and apply the generalised inverse (or quantile function) q of
F on U . The random variable q(U) will then have distribution F . When F is
absolutely continuous, q is simply the ordinary inverse. In order to use this method,
we determine the quantile function of the Gompertz�Makeham distribution explicitly
as done in Jodrá [37]. The expression for the quantile function involves (the principal
branch of) the Lambert W function, and we therefore recall the de�nition.

De�nition 4.14. The Lambert W function is the solution to the equation

W (z)eW (z) = z, z ∈ C.

The Lambert W function is a multivalued complex function with two real branches.
In both of these branches, z is restricted to the interval [−1/e,∞). The real branch
taking values in (−∞,−1] is called the negative branch and is denoted by W−1,
while the real branch with values in [−1,∞) is called the principal branch and is
denoted by W0. We only use the principal branch in the following. Note that
W0(−1/e) = −1 and W0(0) = 0. The history of the Lambert W function as well as
several applications of the function can be found in Corless et al. [15].

Figure 9: The principal branchW0 (dashed line) and the negative branchW−1 (solid
line) of the Lambert W function. The Lambert W function is computed using the
lambertW function in the R package emdBook, Bolker et al. [7].
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The goal is to derive the quantile function qx of Fx. We proceed in two steps. We
�rst compute the quantile function q of F and afterwards, we use a general result
applied to q to compute qx. The following lemma is essential.

Lemma 4.15. Let a, b, c > 0 and z ∈ R. The solution to the equation

z + aebz = c

in terms of z is given by

z = c− 1

b
W0(abebc).

Proof. The proof is a simple matter of rewriting the equation z + aebz = c. We get

z + aebz = c ⇔ c− z = aebc

⇔ (c− z)e−bc = a

⇔ b(c− z)eb(c−z) = abebc

which by de�nition of the Lambert W function means thatW0(abebc) = b(c−z). We
have to use the principal branch since the right hand side is positive. Now simply
isolate z to get the desired result. �

Theorem 4.16. The quantile function q of the Gompertz�Makeham distribution
with parameters β, γ, ρ is given by

q(p) =
γ

βρ
− 1

β
log(1− p)− 1

ρ
W0

(
γ

β
exp

(
γ

β

)
(1− p)−ρ/β

)
, p ∈ (0, 1).

Proof. Given p ∈ (0, 1), we have to solve the equation S(t) = 1 − p in terms of t.
We recall that

S(t) = exp

(
−βt− γ

ρ
(eρt − 1)

)
.

We solve the equation S(t) = 1− p:

exp

(
−βt− γ

ρ
(eρt − 1)

)
= 1− p ⇔ exp

(
−βt− γ

ρ
(eρt − 1)− log(1− p)

)
= 1

⇔ βt+
γ

ρ
(eρt − 1) + log(1− p) = 0

⇔ t+
γ

βρ
eρt =

γ

βρ
− 1

β
log(1− p).

Note that the right hand side is strictly positive and that γ/βρ > 0 and t > 0. Using
Lemma 4.15 with

a =
γ

βρ
, b = ρ and c =

γ

βρ
− 1

β
log(1− p),
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we obtain

t =
γ

βρ
− 1

β
log(1− p)− 1

ρ
W0

(
γ

β
exp

(
γ

β
− ρ

β
log(1− p)

))
=

γ

βρ
− 1

β
log(1− p)− 1

ρ
W0

(
γ

β
exp

(
γ

β

)
(1− p)−ρ/β

)
,

which completes the proof. �

The �nal step in computing qx follows from a more general result provided in the
following lemma.

Lemma 4.17. Let F be a continuous distribution function for the non-negative
random variable T with quantile function q. For x > 0, let Fx denote the distribution
function of T − x | T > x. The quantile function qx of Fx is given by

qx(p) = q(1− (1− p)S(x))− x, p ∈ (0, 1)

where as usual, S = 1− F denotes the survival function of F .

Proof. We wish to solve Fx(t) = p in terms of t. If Sx = 1 − Fx, this amounts
to solving Sx(t) = 1 − p. Using that Sx(t) = S(t + x)/S(x), this is equivalent to
S(x + t) = (1 − p)S(x) so that F (x + t) = 1 − (1 − p)S(x). Applying the quantile
function to both sides yields x+ t = q(1− (1− p)S(x)), and the desired expression
for qx follows immediately. �

Corollary 4.18. If F is the distribution function for the Gompertz�Makeham dis-
tribution, Fx has quantile function qx given by

qx(p) =
γ

βρ
− 1

β
log ((1− p)S(x))− 1

ρ
W0

(
γ

β
exp

(
γ

β

)
((1− p)S(x))−ρ/β

)
− x

Proof. Combine the lemma just presented with Theorem 4.16. �

This corollary is the key result that we will use to simulate the portfolio of insured
in the next section. To compute the principal branch W0, we use the lambertW
function in the R package emdBook.

4.5 Evaluating a survival model - Harrell's C-index

Evaluating a model in regression or classi�cation is straightforward, but the situa-
tion is not as clear for survival models. The evaluation metric should take both the
observations and the censoring into account and relate these quantities to the output
of the model in a way that is easy to interpret. One such measure is Harrell's con-
cordance index (henceforth referred to as Harrell's C-index or simply the C-index )
as presented in Harrell et al. [25], see in particular the paragraph below the headline
�Statistical Calculations�. More discussion on the C-index including the estimator
presented below can be found in Longato et al. [46]. Harrell's C-index takes cen-
soring into account and is easy to compute and interpret, which makes it a popular
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measure for survival settings. We here present the idea for a general survival setting
and later specialise to the case of random survival forests. The idea is to form all
possible pairs of Ti and Tj and determine if the smaller of the two also has a �worse�
predicted outcome, in which case we say that (Ti, Tj) (or simply (i, j)) is concordant.
If it is not possible to compare Ti and Tj in a meaningful way, we say that (i, j) is
not a permissible pair. Harrell's C-index is then simply the ratio of the number of
concordant and permissible pairs.

To be more precise, assume that every observation (Ti, δi) has an associated �risk
measure� Mi which is a quantity related to the likelihood of experiencing an event
(death) for subject i. This risk measure is computed from the predictions of the
model in some way. Harrell's C-index C is then de�ned by

C = P(Mi > Mj | T ◦i < T ◦j ),

that is, the probability of the model predicting a worse outcome for i given that i
actually experiences the event �rst for a randomly selected pair of observations (i, j).
Note that C = 1 means that the model exhibits perfect concordance. In the case of
no ties in the data or in the risk measures, Harrell's estimator is given by

Ĉ =

∑n
i=1 δi

∑n
j=i+1 1{Ti<Tj}1{Mi>Mj}∑n

i=1 δi
∑n

j=i+1 1{Ti<Tj}
.

This estimator is readily extended to the case where ties (Ti = Tj or Mi = Mj)
are possible. The form of the general estimator becomes clear when we present the
algorithm to compute it below. If ties are possible, the general estimator becomes

Ĉ =

∑n
i=1 δi

∑n
j=i+1(1{Ti<Tj} + (1− δj)1{Ti=Tj})(1{Mi>Mj} + 1

21{Mi=Mj})∑n
i=1 δi

∑n
j=i+1(1{Ti<Tj} + (1− δj)1{Ti=Tj})

.

We use a straightforward algorithm to compute Ĉ. It is given as follows.

1. Initialise a numerator, Concordance, and a denominator, Permissible,
both equal to zero.

2. Do the following for every i = 1, ..., n and every j = i+ 1, ..., n:

(a) If Ti < Tj and δi = 0 or Tj < Ti and δj = 0, the pair (i, j) is not
comparable, so skip this iteration of the j loop. Do the same if Ti = Tj
and δi = δj .

(b) Add 1 to Permissible. Then do the following.

i. If Ti < Tj and Mi > Mj , the model correctly estimates that i has a
higher risk than j. Add 1 to Concordance.

ii. Repeat the previous step with i and j reversed.

iii. If Mi = Mj , the model is inconclusive. Add 0.5 to Concordance.

3. Return Harrell's C-index given by Concordance/Permissible.
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The large sample properties of Ĉ are brie�y discussed in Longato et al. [46]. One
can show that

Ĉ → P(Mi > Mj | T ◦i < T ◦j , δi = 1, T ◦i < τ) for n→∞

where τ is the largest observed event time (the type of convergence is not further
speci�ed). Longato et al. [46] discusses the implication that the presence of τ has on
interpretation. We shall not worry about this aspect and simply interpret Ĉ as an
estimate of C. In model evaluation, it is custom to consider the error rate E given
by

E = 1− C.

Recall that we can interpret C as the probability that given two random individuals,
the individual with the worse predicted outcome is outlived by the other. Values
of C (or E) around 0.5 indicate that the model is no better than random guessing
while E = 0 indicates perfect accuracy. As a �nal remark, note that a very bad
model (with E close to 1) can be turned into a �good� model when using this metric,
since we can simply reverse the interpretation of the risk measure used. Therefore,
a model is only truly bad if E is close to 0.5.
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5 Random Survival Forests

�You can't see the wood for the trees.�
- Proverb2

The random survival forest (RSF) is a relatively new method for estimating mortality
rates in survival analysis. The method works analogously to the classi�cation and
regression setups with the key di�erence that the predicted value of a tree is a
function, namely the Nelson�Aalen estimator for the data in the relevant node, and
not a single number. In particular, the labels and the predicted values are not of the
same type as in the case of classi�cation and regression trees. We start by brie�y
presenting the relevant notation and then quickly move on to the algorithm itself.
The details of the algorithm are then discussed in subsequent subsections. After the
algorithm is presented and explained, we prove consistency of RSF and demonstrate
the cababilities of RSF with a practical example. We closely follow the outline of
the article Ishwaran et al. [32]. The technical details concerning the splitting rules
are presented in the article Ishwaran and Kogalur [30]. The proof of consistency is
more or less the same as in Ishwaran and Kogalur [31] but under a di�erent set of
assumptions.

5.1 Notation and terminology

In this section,we are given survival data of the form (X, T, δ) with T the observed
survival time, δ the censoring indicator andX a d-dimensional vector of features. We
consider an iid sample (X1, T1, δ1), ..., (Xn, Tn, δn). We use the following terminology
for a given data point (Xi, Ti, δi). If δi = 0, the i'th individual has been (right-)
censored. If δi = 1, we call Ti an event time or a time of death. Hence the term
�death� refers to a true/observed death. A tree will be denoted by T and N (T ) will
denote the set of terminal nodes.

5.2 The RSF algorithm

RSF largely follows the procedure for general random forests. An outline of the
algorithm is as follows:

1. Draw B bootstrap samples with replacement from the original data. The data
not included in a particular bootstrap sample is referred to as out-of-bag data
(OOB data).

2. Grow a survival tree on each bootstrap sample. Whenever we make a split,
randomly select p candidate features from X. Only these features will be used
as candidates for the split. We use a splitting rule that maximises survival
di�erence in the two daughter nodes. Di�erent splitting rules are discussed in
a later subsection. The tree is grown to full size under the condition that a
terminal node should have at least d0 > 0 unique deaths.

2Attributed to Sir Thomas More's Confutacion of Tyndals Answere, 1533.
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3. Calculate the Nelson�Aalen estimator in each node.

4. Compute error estimates in the form of Harrell's C-index.

The algorithm as stated above requires three hyperparameters. These are

� The number of trees, B.

� The number of features selected in a split, p.

� The minimum number of unique deaths in a terminal node, d0. In practice,
this is implemented as simply the minimum number of observations (censored
or not) in a node just like for classicication and regression.

The �rst two points above work in exactly the same way as an ordinary random
forest. We just need to specify what splitting rule to apply. Before doing so, we
need to establish conservation of events, a topic we will discuss soon. Let us �rst
discuss prediction for a survival tree.

5.3 Prediction

Say we have �tted a survival tree T and consider a terminal node h ∈ N (T ) with
nh data points. We let (T1,h, δ1,h), ..., (Tnh,h, δnh,h) denote the survival times and
censoring indicators in h. Let t1,h < t2,h < · · · < tNh,h denote the Nh unique event
times. De�ne the number of individuals at risk at time t,

Y h
t =

nh∑
i=1

1{Ti,h≥t}

and the number of events that have occured by time t,

Nh
t =

nh∑
i=1

1{Ti,h≤t}δi,h.

Furthermore, let Jht = 1{Y ht >0}. The predicted value for h is then the Nelson�Aalen
estimator

Ĥh(t) =

∫ t

0

Jhs
Y h
s

Nh(ds)

which we write in the more convenient form

Ĥh(t) =
∑

l:tl,h≤t

dl,h
Yl,h

(7)

with Yl,h = Ytl,h and dl,h the number of deaths at time tl,h, dl,h = #{k : Tk,h =
tl,h, δk,h = 1}. All data points within h have the same predicted cumulative hazard
function (CHF). To predict using our �tted tree T , we simply drop the vector of
covariates down the tree. Let x be a feature vector. x will fall into a unique
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terminal node due to the way a survival tree is constructed. This allows us to de�ne
the Nelson�Aalen estimator for the conditional CHF H(t | x) by

Ĥ(t | x) = Ĥh(t), if x ∈ h. (8)

When we grow a forest of survival trees, there are two ways of computing an ensemble
CHF. Let Ĥ∗b (t | x) denote the estimated CHF (8) for the b'th bootstrap sample.
We de�ne Ii,b by

Ii,b =

{
1, if i is an OOB case for b

0, otherwise
.

We then de�ne the OOB ensemble CHF for i by

Ĥ∗∗e (t | xi) =

∑B
b=1 Ii,bĤ

∗
b (t | xi)∑B

b=1 Ii,b
.

This corresponds to taking the average over the bootstrap samples where i is OOB.
Another choice is the bootstrap ensemble CHF for i given by

Ĥ∗e (t | xi) =
1

B

B∑
b=1

Ĥ∗b (t | xi).

This is just the usual aggregated prediction over all bootstrap samples.

5.4 Conservation of events

Conservation of events is a useful result that we will apply in de�ning one of the
possible splitting rules for survival trees. Informally, conservation of events states
that the total number of deaths in a node (or a tree) can be recovered from the
Nelson�Aalen estimator. More precisely, the sum of the Nelson�Aalen estimator
evaluated at every observed time (censored and uncensored) equals the total number
of deaths. This principle was introduced in unpublished notes by Naftel, Blackstone
and Turner in 1985.

Lemma 5.1 (Conservation of events). For every terminal node h in a survival
tree T , we have

nh∑
i=1

Ĥh(Ti,h) =

nh∑
i=1

δi,h.

Proof. By reindexing the data if necessary, we may assume without loss of generality
that T1,h ≤ T2,h ≤ · · · ≤ Tnh,h. To prove the result, note that

nh∑
i=1

Ĥh(Ti,h)

is a double-sum where the terms can be regrouped in the following way. Consider
the �rst i such that δi,h = 1 (if such an i does not exist, both sums are zero and the
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result is trivially true). Denote this i by i1. Now note that the term

di1,h
Yi1,h

will appear in the sum
∑nh

i=1 Ĥh(Ti,h) exactly Yi1,h times. Hence the total contribu-
tion to the sum is di1,h. Jumping to the next δi,h equal to one (with index i2), we

can apply the same logic to see that the term
di2,h
Yi2,h

appears Yi2,h times for a total

contribution of d2,h. Continuing this line of argument, we have

nh∑
i=1

Ĥh(Ti,h) = d1,h + d2,h + · · · dNh,h =

nh∑
i=1

δi,h

as desired. �

The following corollary extends conservation of events to a whole tree. The interpre-
tation is similar, namely that the total number of deaths in the data can be recovered
from all survival times and the Nelson�Aalen estimator.

Corollary 5.2. For any survival tree T , we have
n∑
i=1

Ĥ(Ti | xi) =

n∑
i=1

δi.

Proof. Using the previous lemma, we have

n∑
i=1

Ĥ(Ti | xi) =
∑

h∈N (T )

nh∑
i=1

Ĥh(Ti,h) =
∑

h∈N (T )

nh∑
i=1

δi,h =
n∑
i=1

δi.

�

5.5 Splitting rules

We now discuss the most technical aspect of growing a survival tree, namely the
splitting rules. The setup is the following. We are in a node h and seek to split
h into two daughters. The split itself works like the classi�cation and regression
case, namely by selecting a certain feature, which we will simply denote by x, and a
threshold c. All cases (x, T, δ) with x ≤ c go the left node and the remaining cases
go to the right node. A split is then identi�ed with the pair (x, c). A splitting rule
L(x, c) evaluates how good a split is. In the classi�cation case, a good split creates
a large di�erence in proportions between the daughter nodes, while in regression, a
good split creates a large di�erence in the means of the daughters. Analogously, a
good split in a survival tree maximises the di�erence in survival. Before presenting
�ve choices of splitting function L, we �x some notation.

Let (T1, δ1), ..., (Tn, δn) denote the data in h (for the sake of readability, we suppress
the dependence on h in the notation). We let t1 < t2 < · · · < tN denote the distinct
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event times in the parent node h and let di,j and Yi,j denote the number of deaths and
number of individuals at risk at time ti in the daughter nodes j = 1, 2. Explicitly,

Yi,1 = #{l : Tl ≥ ti, xl ≤ c},
di,1 = #{l : Tl = ti, δl = 1, xl ≤ c},
Yi,2 = #{l : Tl ≥ ti, xl > c},
di,2 = #{l : Tl = ti, δl = 1, xl > c},

with xl denoting the value of feature x for individual l. Finally, we let Yi = Yi,1 +
Yi,2, di = di,1 + di,2 and denote by nj the total number of observations in daughter
j, so that n = n1 + n2 with n1 = #{l : xl ≤ c} and n2 = #{l : xl > c}.

5.5.1 Log-rank splitting

The log-rank test for a split (x, c) is given by

LLR(x, c) =

∑N
i=1

(
di,1 − Yi,1 diYi

)
√∑N

i=1
Yi,1
Yi

(
1− Yi,1

Yi

)(
Yi−di
Yi−1

)
di

.

The larger the value |LLR(x, c)|, the greater the survival di�erence between the two
nodes. Hence the best split is found by determining the pair (x∗, c∗) such that
|LLR(x, c)| is maximised,

(x∗, c∗) = argmax
(x,c)

|LLR(x, c)|.

As discussed and demonstrated in the article LeBlanc and Crowley [42], the log-rank
test is robust in both proportional and non-proportional hazard settings, and it has
become a popular splitting rule in the survival tree litterature. Nevertheless, it has
been criticised for having an end-cut-preference, a term originating from Breiman
et al. [11], which means that the test prefers splits that send a large majority of the
observations to one node. The log-rank test belongs to the class of TW statistics,
see the article Segal [51] for more details.

5.5.2 Conservation of events splitting

While the log-rank test is often a good choice, it is of interest to present an alternative
which can help tackle the potential problem of end-cut-preference. One such splitting
rule is conservation of events splitting. In daughter node j, the conservation of events
principle established earlier yields

nj∑
l=1

Ĥj(Tl,j) =

nj∑
l=1

δl,j .

To de�ne the conservation of events splitting rule, �rst order the time points within
each daughter,

T(1),j ≤ T(2),j ≤ · · · ≤ T(nj),j
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with δ(l),j denoting the censoring indicator belonging to T(l),j . De�ne the quantities

Mk,j =
k∑
l=1

Ĥj(T(l),j)−
k∑
l=1

δ(l),j , k = 1, ..., nj .

One can interpreet Mk,j as a �residual� that measures how preserved conservation
of events is within each group. Note thatMnj ,j = 0. The measure of conservation
C(x, c) is then de�ned by

C(x, c) =
1

Y1

(
Y1,1

n1−1∑
k=1

|Mk,1|+ Y1,2

n2−1∑
k=1

|Mk,2|

)

which is a sum of the |Mk,1| and |Mk,2| weighted by the number of individuals in
each node. A low value of C(x, c) indicates that the nodes are well separated. In
most implementations of decision trees, the splitting function is maximised to �nd
the optimal split, so we instead consider the transformed value

LC(x, c) =
1

1 + C(x, c)
.

The best split is then found by determining (x, c) such that LC(x, c) just de�ned
is maximal. The expression C(x, c) provided above is expensive to compute. As
described in Ishwaran and Kogalur [30], C(x, c) is equivalent to

C(x, c) =
1

Y1

2∑
j=1

Y1,j

N−1∑
k=1

(
Nk,jYk+1,j

k∑
l=1

dl,j
Yl,j

)
,

which is easier to compute. This is therefore the expression we will use in an imple-
mentation.

5.5.3 Log-rank score splitting

The log-rank score test works as follows. We assume that the feature of interest x
has been ordered for the n observations in the parent node, x1 ≤ x2 ≤ · · · ≤ xn.
Now compute the ranks for each survival time Tl,

al = δl −
Γl∑
k=1

δk
n− Γk + 1

where Γk = #{m : Tm ≤ Tk} is the number of censored or uncensored observations
less than or equal to Tk. The log-rank score test is then given by

LS(x, c) =

∑
l:xl≤c al − n1a√
n1

(
1− n1

n

)
s2
a
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where a is the sample mean of the ranks a1, a2, ..., an and s2
a the sample variance,

a =
1

n

n∑
i=1

ai, and s2
a =

1

n− 1

n∑
i=1

(ai − a)2.

The absolute value of the log-rank score test |LS(x, c)| indicates the measure of
node separation. Hence the best split is found by maximising |LS(x, c)| over (x, c).
Background on the log-rank score test can be found in the article Hothorn and
Lausen [28], see section 5 in particular.

5.5.4 Approximate log-rank splitting

If one needs to reduce computations, an alternative to log-rank splitting is to use
an approximation which we will call the approximate log-rank test. It is based on
approximating the numerator and the denominator in the expression for the log-rank
test. Considering the numerator, we claim that

N∑
i=1

(
di,1 − Yi,1

di
Yi

)
= D1 −

n∑
i=1

1{xl≤c}Ĥ(Tl)

where Dj =
∑N

i=1 di,j . To see why, we start by noting that it su�ces to show that

N∑
i=1

Yi,1
di
Yi

=

n∑
i=1

1{xl≤c}Ĥ(Tl).

We can use reasoning similar to the proof of Lemma 5.1. Consider the right hand
side,

n∑
i=1

1{xl≤c}Ĥ(Tl) =
n∑
i=1

1{xl≤c}
∑

m:tm≤Tl

dm
Ym

.

Regrouping the terms in the double sum, we see that d1/Y1 shows up all the times
that the corresponding feature x is less than or equal to c. This is by de�nition Y1,1

times. The same reasoning applies to all other terms of the form dm/Ym. Hence the
sum equals

N∑
i=1

Yi,1
di
Yi

as desired. As for the sum in the denominator,

N∑
i=1

Yi,1
Yi

(
1− Yi,1

Yi

)(
Yi − di
Yi − 1

)
di,

we use the approximation outlined on page 105 in the book Cox and Oakes [17].
This yields the �nal approximation to the log-rank test:

L̃LR(x, c) =

√
D
(
D1 −

∑n
l=1 1{xl≤c}Ĥ(Tl)

)
√(∑n

l=1 1{xl≤c}Ĥ(Tl)
)(

D −
∑n

l=1 1{xl≤c}Ĥ(Tl)
)

where D = D1 +D2 =
∑N

i=1 di.
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5.5.5 C-index splitting

When evaluating the predictive performance of a random survival forest, we use the
C-index. It is therefore natural to suggest using the C-index as a splitting rule. This
is explored in Schmid et al. [50], where they claim that this outperforms log-rank
splitting in small datasets and if the censoring rate is high. To use the C-index as
a splitting rule, we need some measure of risk (previously denoted Mi). As in the
article, we choose the risk measure γi := 1{xi>c}, that is, the indicator that the data
goes to the right node. The goal is then to maximise the concordance probability

P(γi < γj | Ti > Tj) = P(xi ≤ c, xj > c | Ti > Tj).

The estimator is presented in Schmid et al. [50] in the case of no ties of the survival
times. We present the general estimator

LHC(x, c) =

∑n
i=1 δi

∑n
j=i+1(1{Ti<Tj} + (1− δj)1{Ti=Tj})(γi(1− γi) + 1

21{γi=γj})∑n
i=1 δi

∑n
j=i+1(1{Ti<Tj} + (1− δj)1{Ti=Tj})

.

Note that γi(1 − γj) = 1{γi>γj} = 1{xi>c,xj≤c} and that 1{γi=γj} = 1 if and only if
observations i and j land in the same node. Computing LHC is simply a matter of
adapting the algorithm presented in Subsection 4.5. The best split is then found by
maximising LHC(x, c) over (x, c).

Both Harrell's C-index and the log-rank statistic are related to the Gehan statistic
for testing the survival di�erence in two groups, see Gehan [21]. Adapted to the
setting of two nodes in a survival tree, the statistic is (in the case of no ties between
survival times) given by

U =
∑

xi>c,xj≤c
(1{Ti<Tj}δi − 1{Tj<Ti}δj)

so that U assigns the value +1 to pairs with Ti < Tj and −1 to pairs with Tj < Ti
as long as the shorter survival time is uncensored. Hence the Gehan statistic is a
measure of whether the survival time in the right node is systematically larger than
the survival time in the left node. Squaring and standardising the Gehan statistic
yields the Gehan�Wilcoxon statistic given by(∑N

i=1 Yi

(
di,1 − Yi,1 diYi

))2

∑N
i=1 Y

2
i Yi,1Yi,2

di(Yi−di)
Y 2
i (Yi−1)

which is closely related to the log-rank statistic LLR above. Indeed, the di�erence
is that the summands are weighted by the number of individuals at risk, and that
we have chosen to take the square root when computing LLR. The above quantity
is equal to U2 divided by the variance of U conditional on the null hypothesis that
the survival time is the same in both nodes and conditional on the pattern of obser-
vations. More details are provided in Gehan [21], see in particular the example just
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before section 5. There is also a strong relationship between LHC and the Gehan
statistic. We may rewrite the Gehan statistic as

U = 2
∑

xi>c,xj≤c
(1{Ti<Tj} + (1− δj)1{Ti=Tj})δj −N

with N the number of possible comparisons between observations in the right and
left node. On the other hand, the numerator of LHC can be written as∑

xi>c,xj≤c
(1{Ti<Tj} + (1− δj)1{Ti=Tj})δj + 0.5N1 + 0.5N2

where N1 and N2 are the number of permissible pairs in the left and right node,
respectively. Hence the C-index is linearly related to the Gehan statistic.

5.6 Prediction error

For prediction error, we use the error E = 1 − C where C is Harrell's C-index
as presented earlier in the section on survival analysis. The setup is completely
transferable. The only thing we need to do is de�ne the risk measure Mi associated
to an observation (Ti, δi). For this, we use the OOB ensemble estimate de�ned above.
Let t1, ..., tN denote all the unique event times in the data. We then de�ne

Mi =
N∑
k=1

Ĥ∗∗e (tk | xi),

and we say that individual i has a worse outcome than individual j if

N∑
k=1

Ĥ∗∗e (tk | xi) >
N∑
k=1

Ĥ∗∗e (tk | xj).

5.7 Data examples

5.7.1 Comparison of splitting rules

To illustrate the RSF method from the JuliaExtendableTrees package and
comparing the di�erent splitting rules above, we have analysed four datasets. All
�gures were made using the Algebra of Graphics Julia library. The datasets analysed
are as follows.

� pbc: Primary Biliary Cirrhosis data from the Mayo Clinic trial. Data was col-
lected between 1974 and 1984 and has a total of 418 observations. We remove
all observations with missing data, which leaves 278 complete observations
(33.49% incomplete observations).

� veteran: 137 observations without any missing data of a randomised trial
of two treatments for lung cancer. The data is from Kalb�eisch and Prentice
[38].
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� cancer: Survival data from patients with advanced lung cancer from the
North Central Cancer Treatment Group. A total of 228 observations with
167 complete observations (26.75% incomplete observations). We only use the
complete data. The data is from the R package survival, Therneau et al.
[52].

� retinopathy: Treatment data of diabetic retinopathy in the eye. Here an
event is loss of vision in the eye. The data has 394 observations and no missing
data. The data is from the R package survival.

We compare the performance of the di�erent splitting rules applied to these datasets.
For every dataset, we do the following: Sample 100 bootstrap datasets and �t a
random forest for each splitting rule. Then compute the C-index. Each forest has
1000 trees and a minimum node size of 15. We use classic bootstrap. The result is
plotted below.

Figure 10: Error rates for the datasets cancer, pbc, retinopathy and veteran
for each available splitting rule in JuliaExtendableTrees. The box-plots are
computed based on 100 bootstrap samples of the original data.
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From the �gure, we note the following. The log-rank and approximate log-rank
splitting rules yield almost identical results. In fact, approximate log-rank performs
marginally better than log-rank. This is a nice observation since the approximate
log-rank statistic is less computationally intensive. Interestingly, the best splitting
rule varies quite a bit depending on the dataset.

It is worth noting the behaviour of the C-index splitting rule. For the datasets with
no missing observations, the C-index splitting rule is noticably worse. It is noticably
better for the pbc dataset however. According to Schmid et al. [50], the C-index
outperforms log-rank splitting when the censoring rate is high. For veteran, the
censoring rate is 6.57% while it is 59.78% for pbc. On the other hand, it is around
60% for retinopathy as well, so this only partially explains the observed be-
haviour.

As a �nal comment, we note that the error rates for the log-rank, conservation of
events, log-rank score and approximate log-rank splitting rules concur with those
produced by the randomForestSRC package, Ishwaran et al. [33].

5.7.2 A case study: The peakVO2 dataset

We now do a study of the dataset peakVO2 from the package randomForestSRC.
The data is thoroughly discussed and analysed using RSF in the article Hsich et al.
[29]. The data consists of 2231 observations from patients with systolic heart fail-
ure undergoing cardiopulmonary stress testing at the Cleveland Clinic. The dataset
has 39 covariates involving both demographic variables, stress testing variables and
medical information. It is worth noting that some of the observations in the dataset
are imputed. As explained in Hsich et al. [29], laboratoy tests from before October
1999 were systematically missing, and as a consequence, 10% of the serum glucose,
serum urea nitrogen, creatine and sodium values and 15% of hemoglobin values are
imputed using informed imputation.

The goal is to tune the hyperparameters to obtain as small an (OOB) error as pos-
sible, and in the following, we only report the OOB error rate. We set no restriction
on the maximum depth, and we use ordinary bootstrap to start with. We grow 1000
trees. We now establish the best splitting rule as well as the best minimal size of a
node. We check the values 5, 10, 15, 20, 30, 40 and 50 for each of the �ve splitting
rules and obtain the following plot.
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Figure 11: The error rate as a function of minimal node size for the peakVO2 dataset.
All �ve splitting rules were considered. ALR = approximate log-rank splitting, C =
C-index splitting, Con = conservation of events splitting, LR = log-rank splitting,
LRS = log-rank score splitting.

From the plot, it seems that a minimum node size of 20 with log-rank score splitting
is ideal. Performance is quite similar for four of the splitting rules with only C-index
splitting being a clear outlier. We choose to continue working with min_node_size
= 20 and the log-rank score splitting rule. Next we investigate the sampling scheme.
It is certainly interesting to see the e�ect of varying the fraction of data used, es-
pecially if choosing a low value does not increase the error too much. We vary the
fraction of data used, sfrac, over 0.1, 0.2, ..., 0.9, 1.0 and sample with replacement
for sfrac = 1.0 and without otherwise. This yields the following plot.
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Figure 12: The error rate as a function of the fraction of data used to �t a tree in
the forest for the peakVO2 dataset. We have swr = false except for the case
sfrac = 1.0.

The variation in the error is quite small. This is likely because the dataset contains
many observations. From the �gure, it seems that classic bootstrap yields the lowest
error. It also seems that sfrac = 0.6 and swr = false is a good choice. In the
�nal forest, we choose sfrac = 1.0 and swr = true, but for the next test, we
work with sfrac = 0.6 and swr = false to save computation time. Another
interesting hyperparameter is the number of split points used in a split, n_split.
The default value in JuliaExtendableTrees is 10. We now investigate the e�ect
for nine di�erent values of n_split, namely 1, 2, 3, 4, 5, 10, 25, 50 and 100.

Figure 13: The error rate as a function of the number of split points used whenever
a split occurs for the peakVO2 dataset.
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Surprisingly, only using a single split point yields the lowest error, followed by using
three. One would expect a larger number of split points to give more precise estimates
since a low number of split points prevents good splits. It is possible that a low
number of split points decreases the correlation between trees to a degree which
more than makes up for the loss in missing good splits. So far, we have used the
default number of candidate features for a split, namely 6 (the integer closest to√

39), but it is possible that using a di�erent number of features is better. The
following �gure illustrates our �ndings.

Figure 14: The error rate when varying the number of candidate features in a split
for the peakVO2 dataset. The case n_features = 39 corresponds to bagging. The
error rate is plotted for three di�erent values of n_split, namely 1, 3 and 10.

As shown in the �gure, we choose to plot the error rate for three di�erent values of
n_split to con�rm that it was not simply a coincidence that n_split = 1 was
best. From the plot, it is evident that choosing n_features = 8 is a good idea
(even if the best choice is 9 for n_split = 3). It also seems that n_split = 1 is
still optimal. Lastly, we test the e�ect of varying the number of trees. Here we use
ordinary bootstrapping.
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Figure 15: The error rate when varying the number of trees in the forest for the
peakVO2 dataset.

Interestingly, the lowest error occurs for 900 and 1000 trees. Since the absolute
di�erence in error is so small, it is likely just due to randomness. Fixing the random
seed (2024) and trying out a few values of n_trees, choosing n_trees = 2500 led
to the error 0.2905 which seems to be the lowest value, we are able to get at this
point. Let us summarise.

Hyperparameter Value

n_features 8
n_trees 2500
L L_log_rank_score
n_split 1
min_node_size 20
sfrac 1.0
swr true

Figure 16: Table of the optimal parameters found for a random survival forest �tted
on the dataset peakVO2.

In the article Hsich et al. [29], they report a C-index of 0.705, corresponding to an
error of 0.2950. This was for a forest with 2000 trees, 3 split points, the log-rank
splitting rule, 7 features and a minimal node size choosen such that a terminal node
has no fewer than 3 observed deaths. We conclude that our choice of hyperparameters
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seems to lead to a marginally better precision. The article further reports that a
Cox proportional hazards model yields a C-index of 0.698, a precision lower but still
very close to the one obtained for a random survival forest.

5.7.3 Comments on performance

A walkthrough of some of the code used for doing the above analyses can be found
in appendix B. While running the code, it became clear that while the precision
of the JuliaExtendableTrees library is comparable to state of the art imple-
mentations, the speed is not. The runtime scales quite poorly with the number of
observations. As an illustration, running the 35 survival forests needed to make the
plot of the error for varying minimum node sizes took about 108 minutes with an
Intel Core i5-8250 CPU with 1.60 GHz (using 4 threads). For comparison, �tting
the 2000 random forests used for the boxplots took less than 50 minutes. The slow
runtime is not surprising considering the way the library is structured. The library
is a lot more �functional� in nature compared to other implementations, which ex-
hibit a more object-oriented structure, where essential quantities are computed as
few times as possible. One can also choose to save results of previous computations
during �tting which saves time both when �tting and computing the error (both the
packages randomForestSRC and ranger, Wright and Ziegler [54], do the �tting
and error computations at the same time by default). The price for such an optimi-
sation is an increase in memory usage, but this price is often worth it. If one wants
to extend the library to include more general multi-state models, such optimisations
are necessary for the library to be useful.

5.8 Simulated example from life insurance

In this subsection, we simulate simple life insurance data from a survival model and
analyse the data using di�erent methods.

5.8.1 Simulating the data

We brie�y describe how the data is simulated. We consider the covariates

� X1 ∼ Bern(1/2),

� X2 discrete uniform on the values (0, 1/2, 4/5, 1) with probabilities (5/12, 1/4, 1/6, 1/6),

� X3 ∼ Bern(7/10),

� X4 ∼ U(2.5 · 105, 7.5 · 105) (rounded to the nearest integer),

� X5 ∼ N (25, 8).

X5 is the age of the policyholder when initiating the contract. A possible interpre-
tation of the remaining variables is the following. X1 is sex (1 = male, 0 = female),
X2 could be an indicator of type of residence (city, village etc.), X3 could be an
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indicator of marriage (1 = married, 0 = not married), and X4 is the annual wage.
We simulate from a Gompertz�Makeham model with the hazard

α(t;X1, X2, X3, X4, X5) = β(X1) + γ(X2) exp(ρ(X1, X3, X4)(t+X5))

where

β(X1) = 0.0004 +X1 · 0.0001,

γ(X2) = 0.000072 +X2 · 0.000006,

ρ(X1, X3, X4) = 0.0785 +X1 · 0.005−X3 · 0.008 +
1000

X4
.

This model �ts into the framework described earlier. Indeed, if F is the Gompertz�
Makeham distribution with β, γ and ρ speci�ed by the above functions, we simulate
from the model Fx, where the starting age is stochastic and given by X5. This allows
us to use Corollary 4.18 to simulate the data (see the appendix for the code and some
exploratory plots of this data). We choose to simulate 10.000 observations. When
applying the principal branch of the Lambert W function using the emdBook pack-
age, 210 NaN values where produced. We simply chose to ignore these observations
and simply continue working with a dataset with 9.780 observations. We impose no
censoring on the data.

5.8.2 Analysing the data

We analyse the data using three methods. A nonparametric approach using RSF,
a semiparametric method in the form of the Cox proportional hazards model and a
parametric method, namely Poisson regression. To estimate the baseline hazard in
the Poisson regression model, we use piecewise constant hazards as described in the
section on survival analysis with split points 0, 5, 20, 40, 60, 70, 80, 85, 90 and 100.
All analyses are made in R. To �t the Cox model, we use the survival package,
Therneau et al. [52]. For the Poisson regression model, we use the package eha,
Broström [12]. For the RSF, we use randomForestSRC. The reason for using R
is twofold. First and foremost, too few survival analysis tools are available in Julia,
and the RSF implementation in JuliaExtendableTrees is not yet fast enough to
handle datasets of this size. Playing around with the hyperparameters in the RSF,
we found that a minimum node size of 5 and using the log-rank score splitting rule
was best in terms of minimising the C-index error. The number of trees had little
e�ect on the error, so we choose 500 trees. All other parameters are the default for
the rfsrc function. We bootstrapped 100 datasets, �tted each model and computed
the C-index error. This gave the following boxplot (made in R using the Tidyverse
family of packages, [2]).
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Figure 17: Boxplots of the C-index error when using three di�erent survival models
on the simulated insurance data.

From the �gure, it is clear that the RSF model is best in terms of the C-index error.
We also note that the variation in error for each model is very small, and that the
two proportional hazard models yield very similar errors. When �tting these models,
it became clear that the RSF grown on the full (non-bootstrapped) dataset had a
much higher error (around 0.4126) than the error from the bootstrap datasets. This
is quite surprising. A possible explanation is that resampling occurs twice. First a
bootstrap dataset is created which introduces duplicates. Afterwards a subsample
is extracted so that OOB observations may coincide with in-bag samples. This ar-
ti�cially reduces the error. A complete explanation requires extensive knowledge of
the implementation of rfsrc in randomForestSRC.

Since we know the true hazard function, it makes sense to compare the �tted Nelson�
Aalen estimator for the three models. In an insurance context, accurate prediction
of hazards is key when estimating quantities like the reserve. In the following �gure,
the Nelson�Aalen estimators for eight di�erent combinations of features plucked from
the data are presented. From top left to bottom right, these combinations are

1. X1 = 1, X2 = 1, X3 = 1, X4 = 307983, X5 = 25.88,

2. X1 = 1, X2 = 1, X3 = 1, X4 = 601354, X5 = 25.64,

3. X1 = 1, X2 = 1, X3 = 0, X4 = 301600, X5 = 24.94,

4. X1 = 1, X2 = 1, X3 = 0, X4 = 604542, X5 = 24.56,

5. X1 = 0, X2 = 1, X3 = 1, X4 = 299737, X5 = 25.27,
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6. X1 = 0, X2 = 1, X3 = 1, X4 = 623863, X5 = 25.27,

7. X1 = 0, X2 = 1, X3 = 0, X4 = 302075, X5 = 24.63,

8. X1 = 0, X2 = 1, X3 = 0, X4 = 636900, X5 = 25.02.

This yields the following plot.

Figure 18: The Nelson�Aalen estimator for eight di�erent combinations of features.
Blue: The Cox model, green: The Poisson model, red: RSF, purple: the true hazard.

Several tendencies are clear. First and foremost, the Cox model is way o�. The
Poisson model starts as a good �t and then explodes in a similar manner as for the
Cox model. It seems that the proportional hazard assumption is far from satis�ed.
Furthermore, the proportional hazard models have signi�cant di�culty in incorpo-
rating the e�ect of varying starting ages. Compared to these two models, the RSF
is a much better �t, although it seems to systematically overestimate the hazard.

5.8.3 Further comments

An important lesson from the above study is the importance of choosing the right
evaluation metric. Harrell's C-index can be useful from a biostatistical perspective
to evaluate if the model correctly chooses the individuals most likely to live longer,
but it seems to be less suited for predictive models in life insurance. In life insurance,
precise mortality estimates are extremely important since large deviations from the
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true hazard will propagate into the model for valuation. This suggests that if RSF
is to be used for prediction in an insurance context, a di�erent evaluation criterion
needs to be developed. It is however unclear at the moment how such a criterion
should be de�ned.

5.9 Consistency

In this subsection, we prove that, under certain regularity assumptions, RSF is
consistent in the sense of uniform convergence of the Kaplan�Meyer estimator on
bounded intervals. Throughout this subsection, we assume that the survival function
of T ◦ is given by

S(t | X) = P(T ◦ > t | X) =
∑
x∈X

1{X=x} exp

(
−
∫ t

0
α(s | x)ds

)
so that α(· | x) is the hazard rate for the subpopulation X = x. To set the stage,
recall that for a survival tree T with a terminal node h ∈ N (T ), the predicted value
for the observations in h is the Nelson�Aalen estimator

Ĥh(t) =

∫ t

0

Jhs
Y h
s

Nh(ds).

We can then form the Kaplan�Meyer estimator Ŝ(t) for the observations in h by

Ŝh(t) = T
s∈(0,t]

(1− Ĥh(ds)) =
∏
s∈(0,t]

(
1− ∆Nh

s

Y h
s

)
.

Just like with the Nelson�Aalen estimator, to compute the predicted survival func-
tion Ŝ(t | x) for a feature vector x, simply drop x down the tree to obtain

Ŝ(t | x) = Ŝh(t), if x ∈ h.

We now prove consistency of random survival forests. The proofs rely heavily on
the choice of growing the trees to full size under the restriction that a terminal node
must have at least d0 > 0 events (true deaths). Before embarking on the proofs, we
make the following assumptions:

Assumption 5.3. We assume the following.

(i) Right censoring is entirely random given covariates, T ◦ ⊥⊥ R | X.

(ii) For every A 6= ∅, we have P(X ∈ A) > 0.

(iii) The feature space X is �nite and discrete.

(iv) If τR := sup{t ≥ 0 : FR(t) < 1} denotes the upper endpoint of the distribution
of R, we have P(R ∈ (u, v)) > 0 for every 0 ≤ u < v < τR. We furthermore
assume τR > 0 so that R is not the one-point measure in zero.
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The �rst result shows uniform consistency of the Kaplan�Meyer estimator on bounded
intervals for a single tree.

Theorem 5.4. Let t ∈ (0, τ(x) ∧ τR) where τ(x) = sup{t :
∫ t

0 α(s | x)ds < ∞}. If
α(· | x) is strictly positive over [0, t] for every x ∈ X , then

sup
s∈[0,t]

|Ŝ(s | x)− S(s | x)| P−→ 0 as n→∞.

If furthermore, t ∈ (0, τ ∧ τR) with τ = min{τ(x) : x ∈ X}, we have the aggregate
result

sup
s∈[0,t]

∫
X
|Ŝ(s | x)− S(s | x)|P(X ∈ dx)

P−→ 0 as n→∞.

Proof. We claim that P(X ∈ A, δ = 1) > 0. Indeed, we have that

P(X ∈ A, δ = 1) =
∑
x∈A

P(X = x, δ = 1) =
∑
x∈A

P(δ = 1 | X = x)P(X = x).

Using assumption (ii), P(X = x) > 0 for all x ∈ X . Hence we have to show that
P(δ = 1 | X = x) > 0. Using the tower property and the assumption of conditional
entirely random right censoring, we have

P(δ = 1 | X = x) = P(T ◦ ≤ R | X = x) =

∫ ∞
0

P(T ◦ ≤ r | X = x, R = r)P(R ∈ dr)

=

∫ ∞
0

P(T ◦ ≤ r | X = x)P(R ∈ dr),

and this quantity is strictly positive by the assumptions on α and R. It now follows
from the law of large numbers that

1

n

n∑
i=1

1{Xi∈A,δi=1}
P-a.s.−→ P(X ∈ A, δ = 1) > 0,

from which it follows that

n∑
i=1

1{Xi∈A,δi=1}
P-a.s.−→ ∞

implying that for every k ∈ N,

1{
∑n
i=1 1{Xi∈A,δi=1}≥k}

P-a.s.−→ 1. (9)

We now utilise that the tree is grown to full size with the restriction that each
terminal node should have at least d0 > 0 observed deaths. Assume that for some n,
we have a terminal node with two distinct values of x. Using (9), as n grows larger,
we see that a.s. we will have su�ciently many observations in a node to obtain a
split which ensures that both daughters have at least d0 distinct observed events.
Hence a split will happen with probability one as n growns. Since X is �nite, this
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shows that in the limit n→∞, each terminal node h contains a unique value of x.
We conclude that for large enough n, any terminal node h may be identi�ed with
exactly one x-value. We will abuse notation and write h = x when h is identi�ed
with x. Now �x t ∈ (0, τ(x) ∧ τR) and let s ∈ [0, t]. It now follows that

Ŝ(s | X) =
∑
x∈X

1{X=x=h}Ŝh(s) + oP(1) (10)

uniformly in s since 1{X=x=h} and 1{X∈h} are eventually equal in the limit n→∞
for all x and some h ∈ N (T ), and since Ŝh(s) is bounded for all h. We now wish to
apply Corollary 4.6 to show that

sup
s∈[0,t]

|Ŝh(s)− S(s | x)| P−→ 0 (11)

as n→∞ for each h = x. Recall that Y (n)(s | x) =
∑n

i=1 1{Ti≥s,Xi=x} denotes the
number of individuals at risk with feature x and that the setup of RSF �ts into the
multiplicative intensity framework with intensity α(s | x)Y (n)(s | x). To apply the
corollary, we need to verify the two assumptions∫ t

0

J (n)(s | x)

Y (n)(s | x)
α(s | x)ds

P−→ 0 (i)

and ∫ t

0
(1− J (n)(s | x))α(s | x)ds

P−→ 0 (ii)

as n → ∞ where J (n)(s | x) = 1{Y (n)(s|x)>0}. By the de�nition of τ , we have

K := sups∈[0,t] α(s | x) <∞. We claim that infs∈[0,t] Y
(n)(s | x)

P-a.s.−→ ∞. Indeed, for
all s ∈ [0, t], we have

1

n
Y (n)(s | x) ≥ 1

n

n∑
i=1

1{Ti≥t,δi=1,Xi=x}
P-a.s.−→ P(T ≥ s, δ = 1,X = x).

We show that P(T ≥ s, δ = 1,X = x) > 0. Indeed,

P(T ≥ s, δ = 1,X = x) = P(T ◦ ≥ s, δ = 1 | X = x)P(X = x),

and P(X = x) > 0 so it su�ces to show that P(T ◦ ≥ s, δ = 1 | X = x) > 0. Here
the tower property is again applied to get

P(T ◦ ≥ s, δ = 1 | X = x) =

∫ ∞
0

P(s ≤ T ◦ ≤ r | X = x, R = r)P(R ∈ dr)

=

∫ ∞
s

P(s ≤ T ◦ ≤ r | X = x)P(R ∈ dr)

which is strictly positive by a similar argument as before (note that s ∈ [0, t]). It

follows that infs∈[0,t] Y
(n)(s | x)

P-a.s.−→ ∞. It is now easy to verify (i) and (ii) above.
For (i),∫ t

0

J (n)(s | x)

Y (n)(s | x)
α(s | x)ds ≤ K

∫ t

0

1

Y (n)(s | x)
ds ≤ Kt

infs∈[0,t] Y (n)(s | x)

P−→ 0
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while for (ii),∫ t

0
(1− J (n)(s | x))α(s | x)ds ≤ K

∫ t

0
1− J (n)(s | x)ds ≤ K

∫ t

0
1− 1{infs∈[0,t] Y

(n)(s|x)>0}ds

= Kt(1− 1{infs∈[0,t] Y
(n)(s|x)>0})

P−→ 0.

Hence the corollary applies and the �rst part of the theorem is proved. We further-
more conclude that by (10), whenever t ∈ (0, τ ∧ τR),

sup
s∈[0,t]

∫
X
|Ŝ(s | x)− S(s | x)|P(X ∈ dx) ≤

∫
X

sup
s∈[0,t]

|Ŝ(s | x)− S(s | x)|P(X ∈ dx)

=
∑
h=x

P(X = x)

(
sup
s∈[0,t]

|Ŝh(s)− S(s | x)|

)
+ oP(1).

Since the sum is �nite and each term converges to zero in probability by (11), the
proof is complete. �

Remark 5.5. In the article Ishwaran and Kogalur [31], the above theorem is proven
by assuming

X ⊥⊥ δ and T ◦ ⊥⊥ R

instead of T ◦ ⊥⊥ R | X. We have chosen to work with the assumption T ◦ ⊥⊥ R | X
instead for two reasons. One reason is generalisability. This assumption carries
over directly to the multistate setup. Another reason is the causal interpretation.
It makes sense to consider X as a confounder for both the true survival time and
the censoring mechanism. The interpretation of T ◦ ⊥⊥ R | X is then that all the
dependence between T ◦ and R is encapsulated in X which is a far more realistic
assumption than assuming marginal independence between T ◦ and R and between
X and δ. ◦

The theorem just proven shows that under our assumptions of a �nite feature space
and the form of the true survival function, a single survival tree is consistent. In
reality, we �t several trees on bootstrap samples of the data and aggregate the
result. We brie�y recall the notation for this setup. We have a learning sample
L = {(Xi, Ti, δi) : i = 1, ..., n}. We sample B bootstrap samples with replacement
from this set. Denote a bootstrap sample by L∗ = {(X∗i , T ∗i , δ∗i ) : i = 1, ..., n} and let

T ∗ denote the survival tree grown on L∗ with Ŝ∗(t | x) the Kaplan�Meyer estimator
of the bootstrap tree,

Ŝ∗(t | x) =
∑

h∈N (T )

1{x∈h}Ŝ
∗
h(t).

The ensemble survival function for the forest of B trees is

Ŝ∗e (t | x) =
1

B

B∑
b=1

Ŝ∗b (t | x)
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with Ŝ∗b (t | x) the Kaplan�Meyer estimator of the b'th bootstrap tree. We start by
proving consistency of the b'th bootstrap survival tree. Consistency of the ensemble
estimator is an immediate consequence provided in the corollary after the following
theorem. Let F denote the distribution function of T = T ◦ ∧R and let o∗P(1) mean
o(1) in bootstrap probability for almost all L-sample sequences.

Theorem 5.6. Let τ∗(x) = τ(x) ∧ sup(F ) with τ(x) de�ned as in the previous
theorem and sup(F ) = sup{s ≥ 0 : F (s) < 1} the right endpoint of the support of F .
For each t ∈ (0, τ∗(x)), we have

sup
s∈[0,t]

|Ŝ∗(s | x)− S(s | x)| = o∗P(1) + oP(1).

Furthermore, for t ∈ (0, τ∗) with τ∗ = τ ∧ sup(F ),

sup
s∈[0,t]

∫
X
|Ŝ∗(s | x)− S(s | x)|P(X ∈ dx) = o∗P(1) + oP(1).

Proof. Let M∗ = (M∗n,1, ...,M
∗
n,n) be a multinomial random vector from n trials with

each cell having probability 1/n of occuring. By simply regrouping the bootstrap
samples, we have for every nonempty A ⊆ X that

1

n

n∑
i=1

1{X∗i∈A,δ∗i =1}
d
∗

=
1

n

n∑
i=1

1{Xi∈A,δi=1}M
∗
n,i

=
1

n

n∑
i=1

1{Xi∈A,δi=1} +
1

n

n∑
i=1

1{Xi∈A,δi=1}(M
∗
n,i − 1)

where
d
∗

= means equality in bootstrap distribution. The �rst term converges to
P(X ∈ A, δ = 1) in probability. We claim that the second term converges to zero in
bootstrap probability. Let ε > 0. Using the Markov inequality, one obtains

P∗
(∣∣∣∣∣ 1n

n∑
i=1

1{Xi∈A,δi=1}(M
∗
n,i − 1)

∣∣∣∣∣ > ε

)
≤ 1

ε2n2
E∗
( n∑

i=1

1{Xi∈A,δi=1}(M
∗
n,i − 1)

)2


=
1

ε2n2
E∗
 n∑
i=1

1{Xi∈A,δi=1}(M
∗
n,i − 1)2 +

∑
i 6=j

(M∗n,i − 1)(M∗n,j − 1)1{Xi∈A,δi=1}1{Xj∈A,δj=1}


≤ 1

ε2n2

n∑
i=1

Var∗[M∗n,i] +
1

ε2n2

∑
i 6=j
|Cov∗(M∗n,i,M∗n,j)|.

In the �nal inequality, we simply used that all the indicators are at most one and
that E∗[M∗n,i] = n 1

n = 1. Here we recall that for a multinomial random vector M

with n trials and probability vector p, E[M] = np and Var[M] = n(diag(p)−ppT ).
In the case for M∗, p = (1/n, ..., 1/n), which shows that the above expression is
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O(1/n) in bootstrap probability. Using an argument analogous to the one provided
in the proof of the previous theorem, we have for t ∈ (0, τ∗(x)) and s ∈ [0, t] that

Ŝ∗(s | X) =
∑
x∈X

1{X=x=h}Ŝ
∗
h(s) + o∗P(1).

Again the boundedness of Ŝ∗h ensures that o∗P(1) is uniform in s. Now apply the
triangle inequality to obtain

|Ŝ∗(s | x)− S(s | x)| ≤ |Ŝ∗(s | x)− Ŝ(s | x)|+ |Ŝ(s | x)− S(s | x)|.

The second term is oP(1) uniformly in s by Theorem 5.4. Concerning the �rst term,
recall from the proof of Theorem 5.4 that

Ŝ(s | X) =
∑
x∈X

1{X=x=h}Ŝh(s) + oP(1)

so
|Ŝ∗(s | x)− Ŝ(s | x)| = |Ŝ∗h(s)− Ŝh(s)|+ o∗P(1) + oP(1)

uniformly in s for h = x. Note that an equivalent procedure to obtaining a bootstrap
sample from L is the following:

1. Draw a multinomial vector (n∗h)h from n trials with #X cells where each cell
h = x has probability p̂h := 1

n

∑n
i=1 1{Xi=x=h}.

2. For each h, draw n∗h samples from Lh := {(Xi, Ti, δi) : Xi = x = h}.

We claim that n∗h/nh
P∗−→ 1 where nh = #Lh. Note that p̂h = 1

nnh. We have

E∗
[
n∗h
nh

]
=

1

nh
E∗[n∗h] =

1

p̂h
E∗
[

1

nh
n∗h

]
=
p̂h
p̂h

= 1

and

Var∗
[
n∗h
nh

]
=

1

n2
h

nhp̂h(1− p̂h) =
1

nh

1− p̂h
p̂h

→ 0 as n→∞,

so n∗h/nh
P∗−→ 1 follows from an application of Chebyshev's inequality. We still need

to show uniform convergence of Ŝ∗h(s) − Ŝh(s) for each h = x. Recall that Ŝh(s)

is constructed from a sample of size nh from Lh, and Ŝ∗h(s) is constructed from a

bootstrap sample of size n∗h from Lh. Since n∗h/nh
P∗−→ 1, we may assume that both

Ŝ∗h(s) and Ŝh(s) are constructed from samples of size nh. We may now apply Lemma
3 in the article Lo and Singh [45] to see that

sup
s∈[0,t]

|Ŝ∗h(s)− Ŝh(s)| = O∗P(n
−1/2
h (log nh)1/2) = o∗P(1).

The lemma is applicable because of entirely random right censoring and the posed
assumptions on t. It follows that

sup
s∈[0,t]

|Ŝ∗(s | x)− S(s | x)| = oP(1) + o∗P(1).
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This proves the �rst assertion of the theorem. If t ∈ (0, τ∗), it immediately follows
from the �niteness of X that

sup
s∈[0,t]

∫
X
|Ŝ∗(s | x)− Ŝ(s | x)|P(X ∈ dx) = o∗P(1) + oP(1)

and the theorem is proved. �

Corollary 5.7. For the ensemble predictor Ŝ∗e (t | x), we have the consistency result

sup
s∈[0,t]

|Ŝ∗e (s | x)− S(s | x)| = o∗P(1) + oP(1).

for t ∈ (0, τ∗(x) and

sup
s∈[0,t]

∫
X
|Ŝ∗e (s | x)− S(s | x)|P(X ∈ dx) = o∗P(1) + oP(1).

whenever t ∈ (0, τ∗), where we use the same notation as in the above theorem.

Proof. From Theorem 5.6, we have for t ∈ (0, τ∗(x)) that

sup
s∈[0,t]

|Ŝ∗e (s | x)− S(s | x)| ≤ 1

B

B∑
b=1

sup
s∈[0,t]

|Ŝ∗b (s | x)− S(s | x)| = o∗P(1) + oP(1).

The aggregate result is just as easy to prove. �
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6 Multi-state models

�All models are wrong, but some are useful.�
- George Box

In this section, we provide all necessary background on multi-state modelling needed
for extending the random survival forest. We �rst touch upon general multi-state
models and later consider the Markov model with intensities in more depth. We
wrap up the section with a discussion about the pros and cons of working under the
Markov assumption.

6.1 Setup and estimation

We start by providing the multi-state model setup as presented in Bladt and Furrer
[6]. Consider a non-explosive pure jump process Z = (Zt)t≥0 on a �nite state space
Z ⊆ R and let τZ denote the (possibly in�nite) absorption time of Z. The covariates
X are assumed to be an Rd-valued random variable. We de�ne the multivariate
counting process N = (Njk(t))t≥0 by

Njk(t) := #{s ∈ (0, t] : Zs− = j, Zs = k}, t ≥ 0, j, k ∈ Z, j 6= k,

that is, the total number of jumps from state j to k in the time interval (0, t]. The
following quantities are of utmost importance in estimation.

De�nition 6.1. Let the setup be as above.

(i) We de�ne conditional occupation probabilities pj by pj(t|x) = E[1{Zt=j} | X =
x] and let p(t | x) = (pj(t | x))j∈Z denote the corresponding row vector.

(ii) Let pjk(t|x) = E[Njk(t) | X = x].

(iii) We de�ne the cumulative transition rates Λjk according to

Λjk(t|x) =

∫ t

0

1

pj(s− |x)
pjk(ds|x) for j 6= k and Λjj(t|x) = −

∑
k:k 6=j

Λjk(t|x).

The main quantity of interest in a general multi-state model is the vector p of con-
ditional occupation probabilities. To this end, de�ne

q(t|x) = T
(0,t]

(I + Λ(ds|x)).

Whenever we write q(t | x), it is implicitly assumed that Λjk(t | x) < ∞ so that
q(t | x) is well-de�ned. The relation between q and p is given in the following
proposition.
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Proposition 6.2. It holds that

p(t|x) = p(0|x)q(t|x) = p(0|x) T
(0,t]

(I + Λ(ds|x)).

The proposition is more or less a direct consequence of the following lemma. Before
stating it, we recall the useful in�ow/out�ow formula

1{Zt=j} = 1{Z0=j} +
∑
k∈Z
k 6=j

(Nkj(t)−Njk(t)). (12)

Lemma 6.3. It holds that

p(t|x) = p(0|x) +

∫ t

0
p(s− |x)Λ(ds|x) (i)

and

p(0|x)q(t|x) = p(0|x)q(0|x) +

∫ t

0
p(0|x)q(s− |x)Λ(ds|x). (ii)

Proof. We �rst consider (i). The j'th component of p(s− |x)Λ(ds|x) is given by

(p(s− |x)Λ(ds|x))j =
∑
k∈Z

pk(s− |x)Λkj(ds|x)

=
∑
k∈Z
k 6=j

pk(s− |x)Λkj(ds|x) + pj(s− |x)Λjj(ds|x)

=
∑
k∈Z
k 6=j

(pkj(ds|x)− pj(s− |x)Λjk(ds|x))

=
∑
k∈Z
k 6=j

(pkj(ds|x)− pjk(ds|x)).

Integrating and applying (12) backwards, we obtain∫ t

0
(p(s− |x)Λ(ds|x))j =

∑
k∈Z
k 6=j

(pkj(t|x)− pjk(t|x)) = E
[∑
k∈Z
k 6=j

(Nkj(t)−Njk(t)) | X = x
]

= E[1{Zt=j} − 1{Z0=j} | X = x] = pj(t|x)− pj(0|x).

Rearranging and rewriting to vector form, we obtain (i). As for (ii), we know from
Theorem 3.8 that q(t|x) satis�es the equation

q(t|x) = I +

∫ t

0
q(s− |x)Λ(ds|x)

and that q(0|x) = I. Now multiply by p(0|x), and we obtain (ii). �
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Proof of Proposition 6.2. The result follows immediately by applying Theorem 3.9
with Z(t) = p(t|x), W (t) = p(0|x) and X(t) = Λ(t|x) (note that each coordinate
of Λ(·|x) is increasing and hence of �nite variation) to equation (i) in the above
lemma. �

Proposition 6.2 gives an obvious approach to estimation. If we can �nd an estimator
for the cumulative transition rates Λ(·|x) and the initial distribution p(0|x) (in some
cases, this is given without the need for estimation), we can simply plug this estima-
tor into the product integral to obtain an estimator for p. We discuss estimators of
Λ(·|x) in the presence of right-censoring. We assume that we are given data of the
form

(X, (Zt)0≤t≤R, τZ ∧R)

where R is a censoring variable. In order to do estimation in a general multi-state
model, the following assumption is crucial.

Assumption 6.4. We assume entirely random right-censoring, that is, Z ⊥⊥ R | X.

De�nition 6.5. We de�ne

(i) pcj(t|x) = E[1{Zt=j}1{t<R} | X = x] and

(ii) pcjk(t|x) = E[Njk(t ∧R) | X = x].

The following lemma is key to providing a general estimation strategy when right-
censoring is present.

Lemma 6.6. Under the assumption Z ⊥⊥ R | X, it holds that

Λjk(t|x) =

∫ t

0

1

pcj(s− |x)
pcjk(ds|x).

Proof. Using Z ⊥⊥ R | X, we compute

pcj(t|x) = E[1{Zt=j} | X = x]E[1{t<R} | X = x] = pcj(t|x)P(t < R|X = x)

and

pcjk(t|x) = E
[∫ t

0
1{s≤R}Njk(ds) | X = x

]
=

∫ t

0
E[1{s≤R} | X = x]dE[Njk(ds) | X = x]

=

∫ t

0
P(s ≤ R | X = x)pjk(ds|x).

Combining these results, we get∫ t

0

1

pcj(s− |x)
pcjk(ds|x) =

∫ t

0

P(s ≤ R | X = x)

pj(s− |x)P(s ≤ R|X = x)
pjk(ds|x) = Λjk(t|x)

as desired. �
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Remark 6.7. As pointed out in Remark 2.1 of Bladt and Furrer [6], if Z is Markov
(see the following subsection), one can replace the assumption Z ⊥⊥ R | X with the
weaker condition that the compensator of the multivariate counting process of Z is
unchanged when adding censoring information, see chapter III.2.2 in Andersen et al.
[4]. Indeed, imposing this assumption, we get∫ t

0

1

pcj(s− | x)
pcjk(ds | x) =

∫ t

0

1

pcj(s− | x)
dE[1{s≤R}1{Zs−=j}Λjk(s | x) | X = x]

=

∫ t

0

pcj(s− | x)

pcj(s− | x)
Λjk(ds | x) = Λjk(t | x).

◦

6.2 The (smooth) Markov model

When we later consider consistency for Aalen�Johansen forests, the Markov assump-
tion plays an essential role in certain calculations. We therefore provide a recap of
the de�nition along with some essential properties. Along the way, we highlight the
advantages of working with Markov models in several aspects. All results in regards
to (cumulative) transition intensities and transition probabilities are stated without
covariates, but the results are easily extended to include covariates. We �x a pure
jump process Z = (Zt)t≥0 on a �nite state space Z (although most results in this
subsection may as well be stated for countable state spaces).

6.2.1 De�nitions and basic properties

De�nition 6.8. We let FZ = (FZt )t≥0 denote the natural �ltration generated by
Z, that is, FZ = σ(Zu : u ≤ t). We say that Z is a Markov process (or for brevity,
that Z is Markov) if for every s < t,

Zt ⊥⊥ FZs | Zs.

This de�nition encapsulates how one should think of a Markov process intuitively,
namely that the future is independent of the past given the present. In other words,
the present contains all information necessary to infer about the future behaviour of
the process. The following lemma is essential in computations and is often provided
as the de�nition of a Markov process.

Lemma 6.9. Z is Markov if and only if for every choice of s1 < · · · < sn < t, we
have

Zt ⊥⊥ (Zs1 , ..., Zsn) | Zsn ,

that is, if and only if

P(Zt = k | Zsn = jn, ..., Zs1 = j1) = P(Zt = k | Zsn = jn)

for every s1 < · · · < sn and k, j1, ..., jn ∈ Z.
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Proof. Assume that for every s1 < · · · < sn < t, we have Zt ⊥⊥ (Zs1 , ..., Zsn) | Zsn
and choose s < t. If s1 < · · · < sn ≤ s < t, we get

Zt ⊥⊥ (Zs1 , ..., Zsn , Zs) | Zs

so that in particular,
Zt ⊥⊥ (Zs1 , ..., Zsn) | Zs.

As ⋃
I⊆[0,s]
#I<∞

σ(Zu : u ∈ I)

is an ∩-stable generator for FZs , basic measure-theoretical arguments imply that
Zt ⊥⊥ FZs | Zs. The converse statement is trivial. �

In fact, the Markov property may be extended even more as the following result
shows. The theorem solidi�es our intuition of Markov processes that future infor-
mation is independent of the past given the present.

Theorem 6.10. If Z is Markov, then σ(Zu : u ≥ t) ⊥⊥ FZs | Zs for every t > s.

See the appendix for an elementary proof of this result as well as some additional
properties for conditional independence, following the arguments in Hansen [24].
Alternatively, consult Lemma 11.1 in Kallenberg [40]. This result has far-reaching
consequences and is a major reason for the use of Markov models in life insurance.
The lemma implies that P(A | FZs ) = P(A | Zs) for every A ∈ σ(Zu : u ≥ t)
and s < t. Elementary measure theory implies that for every bounded measurable
function f : Z → R, we have

E[f(Zt) | FZs ] = E[f(Zt) | Zs],

and it is often the case that the right hand side is much easier to compute compared
to the left hand side.

Example 6.11. An important quantity in life insurance is the prospective reserve

V (t) = E
[∫ T

t
e−

∫ s
t r(u)duB(ds) | FZt

]
where r is a deterministic interest rate and B is the payment stream consisting
of contractual bene�ts minus premiums satisfying su�cient regularity conditions to
ensure that the integral as well as the expected value is well-de�ned. T is a maximal
contract time (120 years, say). If the payments only depend on the future position
of Z and Z is Markov, we may write

V (t) = V Z(t)(t) := E
[∫ T

t
e−

∫ s
t r(u)duB(ds) | Z(t)

]
.

This expression is easily computable, see e.g. Proposition 3.1 in Asmussen and
Ste�ensen [5]. We also refer to chapter V of the same book for more background on
Markov models in life insurance. ◦
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For any Markov jump process on Z, we may de�ne the transition probabilities pjk
by

pjk(s, t) = P(Zt = k | Zs = j), s ≤ t, j, k ∈ Z,

and we bundle these probabilites into a matrix p = (pjk)j,k∈Z . As for a general
multi-state model, the best approach for estimation is not to estimate p directly but
via some auxiliary quantity. In practical applications it is often assumed that the
Markov jump process is smooth which is a somewhat informal way of saying that
the process has intensities.

De�nition 6.12. If the limits

αjk(s) = lim
h↓0

pjk(s, s+ h)− δjk
h

exist for all j, k ∈ Z and s ≥ 0, we refer to these as the transition intensities for the
process Z and to α = (αjk)j,k∈Z as the matrix of transition intensities.

Note that for j 6= k, we have

pjk(s, s+ h) = αjk(s)h+ o(h)

so that for small h, we may interpret αjk(s)h as being approximately the probability
of making a jump to state k in the interval [s, s+ h] conditional of being in state j
at time s. It is easily seen that αjk(s) ≥ 0 for all s ≥ 0, j 6= k and that α(s) · 1 = 0
where 1 = (1, ..., 1) which implies that

αjj(s) = −
∑
k:k 6=j

αjk(s).

In the following, we will use the notation

αj•(s) =
∑
k:k 6=j

αjk(s)

to denote the total intensity out of state j. With this notation, αjj(s) = −αj•(s).
We see that

αjk(s)ds = probability of a jump from j to k in [s, s+ ds]

1− αj•(s)ds = probability of no jumps in [s, s+ ds] when in state j at time s,

and combining these, we get that the probability of making a jump from state j to
k in [s, s+ ds) conditional on a jump occuring is

αjk(s)

αj•(s)
. (13)

Now de�ne T (s) := inf{u ≥ 0 : Z(s + u) 6= Z(s)} so that T (s) is the time from s
that Z jumps out of the state Z(s). Given Z(s) = j, T (s) is the time from s until
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Z leaves j. Letting Sj(t) := P(T (s) > t | Z(s) = j), then since −S′j is the density of
T (s) given Z(s) = j, we get

αj•(u+ s) = −
S′j(u)

Sj(u)
= − d

ds
logSj(u)

from which it follows that

Sj(t) = P(T (s) > t | Z(s) = j) = exp

(
−
∫ s+t

s
αj•(u)du

)
. (14)

6.2.2 The Markov process as a marked point process

An alternative to describing a Markov jump process via Z is via its event times and
marks. To be precise, Z may equivalently be described as a marked point process
in the sense of chapter 2 of Jacobsen [35]. For convenience, we recall the relevant
de�nitions. Let E be a set equipped with a sigma-algebra E . To denote an event
which never occurs, we introduce an element∇ referred to as the irrelevant mark. Let
E = E ∪ {∇} and E = σ(E , {∇}) and �x a background probability space (Ω,F ,P).

De�nition 6.13. A simple point process (SPP for short) T is a sequence T =
(Tm)m≥1 of [0,∞]-valued random variables de�ned on (Ω,F ,P) satisfying the fol-
lowing properties:

(i) P(0 < T1 ≤ T2 ≤ ...) = 1,

(ii) P(Tm < Tm+1, Tm <∞) = P(Tm <∞) for m ≥ 1 and

(iii) P(limm→∞ Tm =∞) = 1.

De�nition 6.14. A marked point process (MPP for short) with mark space E is a
double sequence (T ,Y) = ((Tm)m≥1, (Ym)m≥1) with Tm [0,∞]-valued variables and
Ym E-valued variables both de�ned on (Ω,F ,P) satisfying that

(i) T is an SPP,

(ii) P(Ym ∈ E, Tm <∞) = P(Tm <∞) and

(iii) P(Ym = ∇, Tm =∞) = P(Tm =∞) for m ≥ 1.

Given a Markov jump process Z, we let (Z,P(Z)) be the corresponding mark space.
We may then de�ne the jump times T = (Tm)m≥1 by

T1 := inf{t ≥ 0 : Zt 6= Z0}, Tm := inf{t ≥ Tm−1 : Zt 6= ZTm−1}, m ≥ 2.

We may then de�ne the mark sequence Y = (Ym)m≥1 by Ym = ZTm for m ≥ 1. In
later considerations, we de�ne T0 := 0 for convenience. Y0 is then the starting state
of Z. Note that we can easily recover Z from the double sequence (T ,Y) by

Zt =
∞∑
m=0

Ym1[Tm,Tm+1)(t).
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Using this correspondence between Z and (T ,Y), it immediately follows that σ(Z) =
σ((Tm, Ym) : m ≥ 0), that is, the two processes Z and (T ,Y) generate the same
information. In particular, all independence statements concerning Z translate one-
to-one to independence statements about (T ,Y). A particularly useful example is
the assumption Z ⊥⊥ R | X which then holds if and only if (Tm, Ym)m≥0 ⊥⊥ R | X.
Before moving on, we translate equation (14) into the context of MPP's.

Lemma 6.15. Let Z be a Markov pure jump process with intensities αjk and corre-
sponding MPP (T ,Y) = ((Tm)m≥1, (Ym)m≥1). We then have

P(Tm+1 > t | Ym = j, Tm = s) = exp

(
−
∫ t

s
αj•(u)du

)
, s ≤ t

and P(Tm+1 > t | Ym = j, Tm = s) = 1 if s > t.

Proof. Let s ≤ t and note that, in this case, T (s)
d

= Tm+1 − s | Tm = s. Hence

P(Tm+1 > t | Ym = j, Tm = s) = P(Tm+1 − s > t− s | Ym = j, Tm = s)

= P(T (s) > t− s | Zs = j, Tm = s).

Note that {T (s) > t − s} ∈ σ(Zu : u ≥ t) and σ(Zu : u ≥ t) ⊥⊥ FZs | Zs by Theorem
6.10. Since {Tm = s} ∈ FZs , we have

P(Tm+1 > t | Ym = j, Tm = s) = P(T (s) > t− s | Zs = j) = exp

(
−
∫ t

s
αj•(u)du

)
using equation (14). The case s > t is trivial since Tm+1 ≥ Tm a.s. This completes
the proof. �

6.2.3 The Kolmogorov equations

In this subsection, we prove an essential result on the transition probabilities p(s, t)
for a Markov jump process. This result is crucial in both estimation and computa-
tions in general.

Theorem 6.16 (The Kolmogorov equations). When Z is smooth with intensity
matrix α, it holds that

p(s, t) = T
(s,t]

(I + α(u)du), s ≤ t.

Proof. Fix s ≤ t and let p
(n)
jk (s, t) be the probability of going from state j at time s

to state k at time t in at most n jumps. We note that

p
(0)
jk (s, t) = δjk exp

(
−
∫ t

s
αj•(u)du

)
using equation (14) and the fact that one can only go from state j to k in zero jumps

if j = k. As for p
(n)
jk (s, t) with n ≥ 1, we have two cases. If no jump occurs, we
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get p
(0)
jk (s, t). If a jump occurs at time u ∈ (s, t) to, say, state l, it happens with

probability

P(T (s) ∈ du | Z(s) = j)
αjl(u)

αj•(u)

by the discussion above. After the jump, we have n−1 jumps remaining to get from
l to k in the interval (u, t). Since

P(T (s) ∈ du | Z(s) = j) = αj•(u) exp

(
−
∫ u

s
αj•(v)dv

)
du

and as the jump can occur at any time in (s, t) to any state l 6= j, we get

p
(n)
jk (s, t) = p

(0)
jk (s, t) +

∑
l:l 6=j

∫ t

s
exp

(
−
∫ u

s
αj•(v)dv

)
αjl(u)p

(n−1)
lk (u, t)du.

From this identity, it follows that p
(n)
jk (s, t) is di�erentiable in both s and t. Using

Leibniz' rule, we obtain

∂

∂s
p

(n)
jk (s, t) =

∂

∂s
p

(0)
jk (s, t) +

∑
l:l 6=j

∫ t

s
αj•(s) exp

(
−
∫ u

s
αj•(v)dv

)
αjl(u)p

(n−1)
lk (u, t)du

−
∑
l:l 6=j

αjl(s)p
(n−1)
lk (s, t)

= δjkαj•(s) exp

(
−
∫ u

s
αj•(v)dv

)
−
∑
l:l 6=j

αjl(s)p
(n−1)
lk (s, t)

+
∑
l:l 6=j

∫ t

s
αj•(s) exp

(
−
∫ u

s
αj•(v)dv

)
αjl(u)p

(n−1)
lk (u, t)du

= αj•(s)p
(n)
jk (s, t)−

∑
l:l 6=j

αjl(s)p
(n−1)
lk (s, t).

Note that the p
(n)
jk (s, t) are bounded with p

(n)
jk (s, t) ↑ pjk(s, t) for n → ∞, so taking

limits in the above expression, we get

∂

∂s
pjk(s, t) = −αjj(s)pjk(s, t)−

∑
l:l 6=j

αjl(s)plk(s, t) = −
∑
l∈Z

αjl(s)plk(s, t)

which in matrix form means

∂

∂s
p(s, t) = −α(s)p(s, t).

Since p(t, t) = I, we have shown that p satis�es the integral equation

p(s, t) = I +

∫ t

s
α(u)p(u, t)du.

The desired result now follows by applying Theorem 3.8. �
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The equation
∂

∂s
p(s, t) = −α(s)p(s, t)

which we proved directly above is called the Kolmogorov backward equation. Using
Theorem 3.8, we obtain the Kolmogorov forward equation

∂

∂t
p(s, t) = p(s, t)α(t).

Corollary 6.17 (The Chapman�Kolmogorov equations). For any s ≤ u ≤ t,
it holds that

p(s, t) = p(s, u)p(u, t).

Proof. Combine the result of the previous theorem with Proposition 3.5. �

6.2.4 Counting processes and compensators for a Markov process

In the survival model, there was a strong relationship between the intensity and
the compensator for the counting process, see example 3.23. A very similar relation
holds for a Markov jump process. The following result is theorem II.6.8 in Andersen
et al. [4]. A proof may be found in Jacobsen [34].

Theorem 6.18. Let Z be a Markov jump process with intensity matrix α. Consider
the natural �ltration FZ . De�ne

Yj(t) = 1{Zt−=j}, Njk(t) = #{s ∈ (0, t] : Zs− = j, Zs = k}, j 6= k.

Then N = (Njk)j 6=k is a multivariate counting process, and the predictable compen-
sators are given by ∫ t

0
Yj(s)αjk(s)ds.

Equivalently, the processes Mjk de�ned by

Mjk(s) = Njk(s)−
∫ t

0
Yj(s)αjk(s)ds

are martingales.

Right-censoring is incorporated in the same fashion as in the survival setup but for
completeness, we describe it in detail. Say we are given data

((Zt)
i
0≤t≤Ri , τZi ∧R

i)ni=1.

We then form the aggregate (censored) counting processes

N
(n)
jk (t) =

n∑
i=1

N i
jk(t ∧Ri)
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where N i
jk is the counting process for observation i. Since N i

jk(· ∧Ri) has compen-
sator ∫ t

0
Yj(s)αjk(s)ds where Yj(s) = 1{Zs−=j}1{s<Ri},

the aggregate process N
(n)
jk has compensator given by∫ t

0
Y

(n)
j (s)αjk(s)ds where Y

(n)
j (s) =

n∑
i=1

1{Zs−=j}1{s<Ri}.

De�ne
J

(n)
j (s) = 1{Y (n)

j (s)>0},

then we may form Nelson�Aalen estimators of the cumulative transition rates by

Λ̂
(n)
jk (t) =

∫ t

0

J
(n)
j (s)

Y
(n)
j (s)

N
(n)
jk (ds).

Given the form of the compensators and estimators just described, the following
result is hardly surprising.

Theorem 6.19. Consider a Markov jump process with intensity matrix α = (αjk)j,k∈Z .
Let τ = sup{u ≥ 0 :

∫ u
0 αjk(v)dv < ∞, j 6= k}. Let s, t ∈ [0, τ) with s < t. Assume

that for n→∞, we have for every j 6= k that∫ t

s

J
(n)
j (u)

Y
(n)
j (u)

αjk(u)du
P−→ 0 (i)

and ∫ t

s
(1− J (n)

j (u))αjk(u)du
P−→ 0. (ii)

Then as n→∞
sup
u∈[s,t]

|p̂(s, u)− p(s, u)| P−→ 0

where

p̂(s, t) = T
(s,t]

(I + Λ̂(n)(du)).

Proof. Simply copy the proof of Theorem 4.5 and Corollary 4.6. �

Remark 6.20. Since the proof of the above result is identical to the one for 4.5, it
relies heavily on the martingale machinery presented in the preliminaries section.
It is important to be aware that such techniques simply do not apply when the
Markov assumption is omitted. Thus consistency results like the one above will have
to be established by other means, for example via the assumption of independent
right-censoring. ◦
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6.2.5 The case without intensities

Here is a good place to brie�y discuss the case without intensities. In some ap-
plications, it can be an obstacle to assume intensities, for example in applications
with non-zero probability of jumps at speci�c timepoints. A relevant example from
life insurance which has attracted some attention in recent years is the problem of
stochastic retirement as described in Gad and Nielsen [20].

In this more general setting, we simply work with the cumulative transition rates Λ
as given in the beginning of this section. One can then verify that Theorem 6.16
still holds,

p(s, t) = T
(s,t]

(I + Λ(du)),

and Theorem 6.18 also generalises as one would expect. The compensators become∫ t

0
Yj(s)Λjk(ds).

Furthermore, equation (13) becomes

Λjk(ds)

Λj•(ds)

where Λj•(s) =
∑

k:k 6=j Λjk(s), while equation (14) reads

Sj(t) = P(T (s) > t | Zs = j) = exp (Λj•(s+ t)− Λj•(s)) ,

and as a direct consequence, Lemma 6.15 states in this case that

P(Tm+1 > t | Ym = j, Tm = s) = exp (Λj•(t)− Λj•(s))

whenever s < t.

6.2.6 Advantages and disadvantages of the Markov assumption

Let us close this subsection by considering the implications of working with the
Markov assumption. There are several advantages of working with the Markov
assumption, some of which we already touched upon:

� The model is mathematically tractable and allows the use of martingale tech-
niques to prove large sample properties. The Markov assumption also eases
certain computations of quantities based on the estimates of the transition
rates and transition probabilities such as prospective reserves in life insurance.

� In a general multi-state model, the goal is to estimate the occupation proba-
bilities

q(t | x) = T
(0,t]

(I + Λ(du | x)).
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The estimator of q is the same in both models. In a life insurance context
though, the quantity of interest is the matrix of transition probabilities p(s, t |
x). In a Markov model, this quantity comes for free from q via the Kolmogorov
equations and alternatively via the relation

p(s, t | x) = q(s | x)−1q(t | x).

In a non-Markov model, this relationsship is not guaranteed to hold. Instead,
one has to condition on the internal covariate Zs by conditioning on (X, Zs)
instead of just X. This introduces subsampling, which increases the variance
of the estimators, decreasing the robustness of the results.

That being said, there are serious disadvantages of assuming the Markov property.
An obvious problem is that the model may be misspeci�ed. If the underlying data-
generating process is not truly Markov, it does not make sense to use p̂(s, t) as an
estimate of p(s, t) for 0 < s ≤ t. In many cases, we can say with near certainty that
the Markov assumption fails. As an example, consider the disability model from life
insurance.

0: Active 1: Disabled

2: Dead

Λ01

Λ02

Λ10

Λ12

Figure 19: The disability model.

It is realistic to assume that Λ10 and Λ12 depend on the duration in state 1, and
a Markov model is incapable of capturing this phenomenon. In general, any model
with duration dependent intensities cannot satisfy the Markov assumption. Also,
for a su�ciently complicated model, it may not be reasonable to assume that the
behaviour of the process in the future does not depend on the past history, even
when given the current state of the insured.

In conclusion, while the Markov property guarantees nice mathematical properties
and more robust results, in many cases, it simply does not make sense to assume
the Markov property. It is therefore essential to have tools that work for both. The
advantage of our setup is that estimating q is the same, regardless of whether the
Markov assumption holds or not. There is however still the question of consistency
for a general multi-state model. Such results will need to be established via more
general techniques than the martingale approach presented above.
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7 Extending RSF to multi-state models

�If I have seen further, it is by standing on the shoulders of giants.�
- Isaac Newton

This section touches upon all the work related to extending random survival forests
to multi-state models. As with RSF, there is both a practical aspect (splitting rules,
evaluation, implementation details etc.) and a theoretical aspect in the question of
consistency. We choose to focus on the latter in this project.

7.1 The Aalen�Johansen forest

The goal of this subsection is to describe the Aalen�Johansen forest, an extension of
random survival forests to a multi-state setup. We �rst describe the algorithm very
brie�y and then we touch upon the Nelson�Aalen estimator in this setup.

7.1.1 The Aalen�Johansen forest procedure

The Aalen�Johansen forest algorithm is very reminiscent of the RSF procedure and
works as follows. We will in the following use the abbreviation AaJo instead of
Aalen�Johansen.

1. Draw B bootstrap samples from the data.

2. Grow an AaJo tree on each bootstrap sample. In each split, we randomly
choose p candidate features from X. We use a splitting rule that in some
way maximises the di�erence in some quantity of interest between the two
nodes. The tree is grown to full size under the condition that a terminal node
should have at least d0j > 0 distinct observed jumps out of state j for every
non-absorbing state j (d0j = 0 for an absorbing state).

3. In each tree, calculate the matrix of Nelson�Aalen estimators (see equation
(16) below) in every terminal node.

4. Compute some error estimate using OOB data to check the quality of the �t.

We see that the procedure is very reminiscent of the one for survival trees. A key
di�erence is the number of hyperparameters. The AaJo forest requires a whole vector
of d0j . In practice, one could pass a vector (d0j)j∈Z , where d0j = 0 indicates that
the node is absorbing and d0j > 0 that the node is non-absorbing. Alternatively,
one could just continue working with a minimum number of observations in a node.
In this case, it may be necessary to specify somehow which nodes are absorbing.

7.1.2 Prediction

We begin by relating the multi-state terminology to an example, we have already
extensively studied, namely the survival model. Here we only have a single transition
as illustrated in the following �gure.
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0: Alive 1: Dead
Λ01

Figure 20: The survival model.

Hence the cumulative transition rate matrix becomes the classical two by two matrix

Λ(t|x) =

(
−Λ01(t|x) Λ01(t|x)

0 0

)
.

If T ◦ denotes the true survival time and T = T ◦ ∧R as before, we see that

pc0(t|x) = P(s ≤ T ◦, s ≤ R | X = x) = P(T ≥ s | X = x),

and if N◦01 is the true jump process and N01 the censored process, we get

Λ01(t|x) =

∫ t

0

1

P(T ≥ s | X = x)
dE[N01(ds|x)].

Say we have grown a tree and that x lands in the terminal node h with the data
(Ti,h, δi,h)nhi=1. Then P(T ≥ s | X = x) is estimated by

1

nh
Y h
s =

1

nh

nh∑
i=1

1{Ti,h≥s},

and E[N01(s) | X = x] is estimated by

1

nh
Nh
s =

1

nh

nh∑
i=1

N i
01(s) =

1

nh

nh∑
i=1

1{Ti,h≤s}δi,h

and so we get

Λ̂h01(t|x) =

∫ t

0

Jhs
Y h
s

Nh(ds)

which coincides with Ĥh(t) from earlier. We see that the main objective is to gener-
alise the estimators of pcj(s− |x) and pcjk(s|x).

Say we have a tree and we consider a particular terminal node h with data

(Xi,h, (Zi,ht )0≤t≤Ri,h , τZi,h ∧Ri,h)nhi=1. (15)

We see that an estimator of pcj(s− |x) is

p̂c,hj (s− |x) =
1

nh

nh∑
i=1

1{Zi,hs−=j}1{s<Ri,h}

while pcjk(s|x) is estimated by

p̂c,hjk (s|x) =
1

nh

nh∑
i=1

Njk(s ∧Ri,h).
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Combining these leads to the estimator

Λ̂hjk(t) =

∫ t

0

1

p̂c,hj (s− |x)
p̂c,hjk (ds|x).

For computational purposes, a di�erent representation is practical. Given the data
(15) in h, we may compute the following quantities.

(i) The sequence of event times across all jump processes Njk,

0 < t1,h < · · · < tNh,h.

(ii) The number of individuals in each state of Z just before the jump at each
event time,

(Y j,h
1 , ..., Y j,h

Nh
)j∈Z .

To be precise, Y j,h
i is the number of individuals residing in state j immediately

before time ti,h.

(iii) The number of observed/true jumps from j to k at each event time

(dj,k,h1 , ..., dj,k,hNh
)j,k∈Z,j 6=k.

In terms of these quantities, we may write

Λ̂hjk(t) =
∑

l:tl,h≤t

dj,k,hl

Y j,h
l

(16)

which is of the exact same form as the Nelson�Aalen estimator in the survival model.
Bundling these together in a matrix, we obtain the estimator Λ̂h for the cumulative
transition probabilities in node h. Given a feature vector x, we compute the predicted
value Λ̂(t | x) by dropping x down the tree,

Λ̂(t | x) = Λ̂h(t), if x ∈ h.

When we grow a forest of AaJo trees, there are two ways of computing an ensemble
cumulative transition rate matrix, the OOB ensemble and the bootstrap ensemble.
As with the survival forest, let Ii,b = 1 when observation i is an OOB case for b and

0 otherwise. Let Λ̂∗b denote the estimate from the tree grown on the b'th bootstrap

sample. The OOB ensemble is then the matrix Λ̂∗∗e with entries

Λ̂∗∗e,jk(t | xi) =

∑B
b=1 Ii,bΛ̂

∗
b,jk(t | xi)∑B

b=1 Ii,b
,

that is, we take the average only over the cases where i is OOB. The bootstrap
ensemble for observation i is given by

Λ̂∗e,jk(t | xi) =
1

B

B∑
b=1

Λ̂∗b(t | xi).
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7.2 Consistency for a single Markov AaJo tree

In this subsection, we present the work done in this project on consistency of the
Markov AaJo forest. The goal is to prove consistency of the Aalen�Johansen esti-
mator. We wish to estimate the matrix of transition probabilities given covariates

p(s, t | x) = T
(s,t]

(I + Λ(du | x)).

Prediction works as with the Nelson�Aalen estimator, namely by dropping x down
the tree. x lands in a unique terminal node h, and so the predicted value p̂(s, t | x)
is given by

p̂(s, t | x) = p̂h(s, t), x ∈ h

where

p̂h(s, t) = T
(s,t]

(I + Λ̂h(du)).

As with the survival setup, the �rst step in proving consistency is to focus on a single
tree. Let τ(x) = sup{t ≥ 0 :

∫ t
0 αjk(s | x)ds < ∞, j 6= k} and τ = min{τ(x) : x ∈

X}. We make the following assumptions. To make the following proofs easier to
follow, we also recall earlier assumptions.

Assumption 7.1. We assume the following.

� Z has intensities,

Λjk(t | x) =

∫ t

0
αjk(s | x)ds,

and #Z > 1 so that the model is non-trivial.

� The model is connected considered as an undirected graph. In other words,
there is at least one non-zero intensity to or from any node. This implies in
particular that there are no isolated/unreachable nodes.

� Right censoring is entirely random given covariates, Z ⊥⊥ R | X.

� If τR := sup{t ≥ 0 : FR(t) < 1} denotes the upper endpoint of the distribution
of R, we have P(R ∈ (u, v)) > 0 for every 0 ≤ u < v < τR. We furthermore
assume τR > 0 so that R is not the one-point measure in zero.

� For every A 6= ∅, we have P(X ∈ A) > 0.

� The feature space X is discrete and has �nite cardinality.

Theorem 7.2. Assume that αj•(· | x) is strictly positive on [0, t] for every non-
absorbing state j and every x ∈ X . Let t ∈ (0, τ(x) ∧ τR). Then

sup
u∈[s,t]

|p̂(s, u | x)− p(s, u | x)| P−→ 0 as n→∞.
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For t ∈ (0, τ ∧ τR), we furthermore have

sup
u∈[s,t]

∫
X
|p̂(s, u | x)− p(s, u | x)|P(X ∈ dx)

P−→ 0 as n→∞.

The proof is very reminiscent of the one for Theorem 5.4, but the computations are
slightly more complicated and are therefore treated separately.

Lemma 7.3. Under assumptions 7.1 and the assumptions in Theorem 7.2, we have
for any non-absorbing state j and any x ∈ X that

P(Ym = j, Tm+1 ≤ R | X = x) > 0

for at least one m ∈ N0, where ((Tm)m≥1, (Ym)m≥1) is the MPP representation of
Z.

Proof. Using that Z ⊥⊥ R | X and the tower property, we have

P(Ym = j, Tm+1 ≤ R | X = x) =

∫ ∞
0

P(Ym = j, Tm+1 ≤ r | X = x)P(R ∈ dr).

By the assumptions on R, we only need to show that the integrand is non-negative
for at least one m ∈ N0 and some 0 < r ≤ t. Since

P(Ym = j, Tm+1 ≤ r | X = x) = P(Tm+1 ≤ r | Ym = j,X = x)P(Ym = j | X = x),

it su�ces to show

1. P(Tm+1 ≤ r | Ym = j,X = x) > 0 and

2. P(Ym = j | X = x) > 0

for at least one m ∈ N0 (the same m for both 1 and 2) and all r < t. As for 1, the
tower property yields

P(Tm+1 ≤ r | Ym = j,X = x) = 1− E[P(Tm+1 > r | Ym = j,X = x, Tm)]

so we have to determine the conditional probability P(Tm+1 > r | Ym = j,X =
x, Tm). Consider the event Tm = s. If s < r, then

P(Tm+1 > r | Ym = j,X = x, Tm = s) = exp

(
−
∫ r

s
αj•(u | x)du

)
by Lemma 6.15, and if s ≥ r, P(Tm+1 > r | Ym = j,X = x, Tm) = 1. Thus,

P(Tm+1 > r | Ym = j,X = x) = E
[
exp

(
−
∫ r

Tm

αj•(u | x)du

)
1{Tm<r} + 1{Tm≥r}

]
,

from which we get

P(Tm+1 ≤ r | Ym = j,X = x) = E
[
1{Tm<r} − exp

(
−
∫ r

Tm

αj•(u | x)du

)
1{Tm<r}

]
= E

[
1{Tm<r}

(
1− exp

(
−
∫ r

Tm

αj•(u | x)du

))]
.
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By the assumption that αj•(· | x) is strictly positive on [0, t], the above quantity
is strictly positive as long as P(Tm < r) > 0 or equivalently, that P(Tm ≤ r) > 0.
Using the convention T0 = 0, P(T0 ≤ r) = 1 while for m ∈ N, we have by similar
calculations as before that

P(Tm ≤ r) = E[P(Tm ≤ r | Ym−1, Tm−1,X)]

= E
[
1{Tm−1≤r}

(
1− exp

(
−
∫ r

Tm

αYm−1•(u | X)du

))]
.

This implies that P(Tm ≤ r) > 0 if and only if Ym−1 is non-absorbing and Tm−1 < r
with positive probability. This observation implies that we have two cases. Either
there is some M ∈ N such that Ym is absorbing a.s. for m ≥ M which implies a
hiearchical structure of the model without cycles. Otherwise, no Ym is absorbing
a.s. In the �rst case, choose the smallest M such that Ym is a.s. absorbing for
m ≥ M and in the other, simply set M = ∞. Here we should note that M ≥ 1
since we assume a non-trivial model. In any case, for m = 0, 1, ...,M − 1, we have
P(Tm ≤ r) > 0. It follows that

P(Tm+1 ≤ r | Ym = j,X = x) > 0

for every r < t and m < M whenever j is non-absorbing. We now turn our attention
to 2. Assume for the sake of contradiction that

P(Ym = j | X = x) = 0

for every m < M . Since Ym is absorbing a.s. for m ≥ M , we must then have
P(Ym = j | X = x) = 0 for every m ∈ N0 (since j is not absorbing). But this implies
that j is an unreachable state, which is impossible by assumption. We conclude that
there is at least one m < M such that

P(Ym = j | X = x) > 0.

We conclude that we have found at least one m ∈ N0 such that both 1 and 2 hold.
This completes the proof of the lemma. �

Lemma 7.4. Under assumptions 7.1 and the assumptions in Theorem 7.2, we have
for any non-absorbing state j that

P(Zu− = j | X = x) > 0

for every x ∈ X and any u ∈ [0, t].

Proof. Note that {Zu− = j} = {Ym = j, Tm+1 ≤ u for some m ∈ N0}. Hence it
su�ces to show that

P(Ym = j, Tm+1 ≥ u | X = x) > 0
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for some m ∈ N0. By the tower property and the assumption Z ⊥⊥ R | X,

P(Ym = j, Tm+1 ≥ u | X = x) ≥ P(Ym = j, u ≤ Tm+1 ≤ R | X = x)

=

∫ ∞
u

P(Ym = j, u ≤ Tm+1 ≤ r | X = x)P(R ∈ dr)

which is equal to

P(Ym = j | X = x)

∫ ∞
u

P(u ≤ Tm+1 ≤ r | X = x, Ym = j)P(R ∈ dr).

The �rst factor is non-zero for at least one m by the proof of the previous lemma.
Like earlier, it su�ces to show that the integrand is non-zero for this particular m
and r ≤ t. Recall the result

P(Tm+1 ≤ r | Ym = j,X = x) = E
[
1{Tm<r}

(
1− exp

(
−
∫ r

Tm

αj•(u | x)du

))]
=: Pm,j,x(r)

which was established during the proof of the previous lemma. We now compute
P(u ≤ Tm+1 ≤ r | X = x, Ym = j) as follows. Start by observing that

P(u ≤ Tm+1 ≤ r | X = x, Ym = j) = Pm,j,x(r)− Pm,j,x(u).

Written out, the right hand side is

E
[
1{Tm<r}

(
1− exp

(
−
∫ r

Tm

αj•(v | x)dv

))
− 1{Tm<u}

(
1− exp

(
−
∫ u

Tm

αj•(v | x)dv

))]
=

E
[
1{Tm<r}

(
1− 1{Tm<u} + exp

(
−
∫ u

Tm

αj•(v | x)dv

)(
1{Tm<u} − exp

(
−
∫ r

u
αj•(v | x)dv

)))]
.

Multiplying the inner expression by 1 = 1{Tm<u} + 1{Tm≥u} and using that u < r,
we get that the above equals

E
[
1{Tm<u} exp

(
−
∫ u

Tm

αj•(v | x)dv

)(
1− exp

(
−
∫ r

u
αj•(v | x)dv

))]
+E

[
1{u≤Tm<r}

(
1− exp

(
−
∫ r

Tm

αj•(v | x)dv

))]
.

The second term is non-negative and the �rst term is strictly positive for all m < M
and u < t (with M de�ned as in the proof of the previous lemma) since P(Tm <
u) > 0 as shown earlier and the fact that αj•(· | x) is strictly positive on [0, t]. We
have thus shown that for at least one m ∈ N0,

P(u ≤ Tm+1 ≤ r | X = x, Ym = j) > 0

for r < t. This proves the result. �

With more or less all the tedious calculations out of the way, the proof of Theorem
7.2 proceeds similarly as in the survival setup.
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Proof of Theorem 7.2. Consider the iid data (Xi, (Zt)0≤t≤Ri , τZi ∧Ri)ni=1 and intro-
duce the indicators

δij =

{
1, if a jump from j occurs for Zi in [0, Ri]

0, otherwise
.

As usual, we let δj denote a generic δij . We claim that for any A 6= ∅ and j non-
absorbing, P(X ∈ A, δj = 1) > 0. To see why, note that

P(X ∈ A, δj = 1) =
∑
x∈A

P(δj = 1 | X = x)P(X = x), (17)

and that P(X = x) > 0 for every x ∈ X . Let ((Tm)m≥1, (Ym)m≥1) be the MPP
representation of Z. Using this representation, δj = 1 if and only if Ym = j and
Tm+1 ≤ R for some m ∈ N0. Thus,

P(δj = 1 | X = x) = E
[
1⋃

n∈N0
{Ym=j,Tm+1≤R} | X = x

]
.

From Lemma 7.3, P(Ym = j, Tm+1 ≤ R | X = x) > 0 for at least one m ∈ N0, and
so P(X ∈ A, δj = 1) > 0 by the decomposition (17). Using the law of large numbers,

1

n

n∑
i=1

1{Xi∈A,δij=1}
P-a.s.−→ P(X ∈ A, δj = 1) > 0 as n→∞

and so
n∑
i=1

1{Xi∈A,δij=1}
P-a.s.−→ ∞ as n→∞

from which we may conclude that for any k ∈ N,

1{
∑n
i=1 1{Xi∈A,δi

j
=1}≥k}

P-a.s.−→ 1 as n→∞. (18)

The tree is grown to full size with the restriction that a terminal node should have
at least d0j > 0 unique jumps from any non-absorbing state j. Using (18), we see
that as n grows, we will with probability one have su�ciently many observations
in a node to obtain a split such that both daughter nodes have at least d0j unique
jumps out of state j. We conclude that for large enough n, any terminal node h
may be identi�ed with exactly one x-value, and like before, we write h = x when h
is identi�ed with x. We have just argued that 1{X=x=h} and 1{x∈h} are eventually
equal as n grows to in�nity, from which it follows that

p̂(s, u | X) =
∑
x∈X

1{X=x=h}p̂h(s, u) + oP(1)

uniformly in u ∈ [s, t] (note that p̂ is bounded in the matrix norm since each entry
is bounded by one). We want to be able to apply Theorem 6.19 to show that for
h = x and t ∈ (0, τ(x) ∧ τR),

sup
u∈[s,t]

|p̂h(s, u)− p(s, u | x)| P−→ 0 as n→∞.
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Hence we have to show that∫ t

s

J
(n)
j (u | x)

Y
(n)
j (u | x)

αjk(u | x)du
P−→ 0 (i)

and ∫ t

s
(1− J (n)

j (u | x))αjk(u | x)du
P−→ 0 (ii)

as n → ∞ for any x and j 6= k. Note that if j is absorbing, both (i) and (ii) are
trivially satis�ed, so let j be non-absorbing. By copying the procedure in the proof
of Theorem 5.4, it su�ces to show that

inf
u∈[s,t]

Y
(n)
j (u | x)

P-a.s.−→ ∞ as n→∞ (19)

where Y
(n)
j (u | x) =

∑n
i=1 1{Ziu−=j,Xi=x} is the number of individuals at risk of

making a jump from state j just before time u with feature x. Using the strong law
of large numbers,

1

n
Y

(n)
j (u | x)

P-a.s.−→ P(Zu− = j,X = x). (20)

As P(Zu− = j,X = x) = P(Zu− = j | X = x)P(X = x), P(X = x) > 0 by
assumption and P(Zu− = j | X = x) > 0 by Lemma 7.4, we have

Y
(n)
j (u | x)

P-a.s.−→ ∞ as n→∞

and hence also (20) is true. This establishes (19) and thus

sup
u∈[s,t]

|p̂(s, u | x)− p(s, u | x)| P−→ 0 as n→∞.

If t ∈ (0, τ ∧ τR), we have

sup
u∈[s,t]

∫
X
|p̂(s, t | x)− p(s, t | x)|P(X ∈ dx) ≤

∫
X

sup
u∈[s,t]

|p̂(s, t | x)− p(s, t | x)|P(X ∈ dx)

=
∑
h=x

P(X = x)

(
sup
u∈[s,t]

|p̂h(s, u)− p(s, u | x)|

)
+ oP(1).

The sum is �nite and each term converges to zero in probability, and so the proof is
complete. �
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8 Discussion and further work

�I'm happy to put this all behind us and get back to work. After all,
we've got a lot to do, and only sixty more years to do it. More or less. I
don't have the actuarial tables in front of me.�
- GLaDOS (Portal 2 )

In this section, we discuss future aspects of the project. There is still a lot to be
done of both a theoretical and practical nature.

8.1 Theoretical work

The theoretical endgoal is to establish consistency of the AaJo forest. We have al-
ready established consistency for a single tree when the underlying model is Markov.
It is of great interest to extend the result to a model which is not necessarily Markov.
This likely requires di�erent regularity conditions on the behaviour of Z. We also
need to extend the consistency from a single tree to a whole forest by proving consis-
tency of a bootstrap tree. For the survival forest, the fundamental result is Lemma
3 from Lo and Singh [45]. All results in that article relies on a speci�c form of the
Kaplan�Meyer estimator which is not directly transferable to the multi-state setup.
If one wants to follow their approach, the results of the article need to be extended
or modi�ed. Since we are (for now) only interested in consistency and not a rate of
convergence, it is plausible that a simpler approach exists which only yields conver-
gence and not a speci�c rate. The role of the Markov assumption in the question of
consistency for a bootstrap tree is still unclear and needs to be investigated.

All consistency results rely on the assumption of discrete feature spaces. It would
be interesting to investigate consistency results based on less restrictive or di�erent
assumptions. We furthermore conjecture that all results hold without the intensity
assumption. To verify this, we need to restate and possibly reprove some of the
results in this thesis, possibly using di�erent methods.

8.2 Practical work

The practical work for the AaJo forest lies in the following aspects.

1. Splitting rules: We need to develop splitting rules for the AaJo forest, prefer-
ably more than one. A possible solution may lie in simply extending those for
the survival forest. A possibility is to use survival splitting rules for every
possible transition and then weigh the split value for every transition with the
total number of transitions or some user-speci�ed weight. The goodness of the
splitting rule will depend highly on the application.

2. Evaluation metric: It is at the moment unclear what evaluation metric one
should use for the AaJo forest. A possibility is to extend Harrell's C-index
to multi-models by considering each transition with proper weights. There is,
however, an argument to be made that the C-index is not necessarily the right
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choice in an insurance context as it does not take the absolute size of the �tted
cumulative hazard into account. If the AaJo forest is to be adopted by the life
insurance industry, more work needs to be done in this regard.

3. Estimation of the initial distribution p(0 | x): While in some applications
(such as life insurance), the initial distribution p(0 | x) may be fully speci�ed,
we still need to consider how to estimate it when it is not. One possibility is
to simply use a classi�cation random forest, treating each state as a label.

4. An optimised implementation: When we have come up with sensible split-
ting rules, it is absolutely essential to write an optimised implementation of
the AaJo forest. A possibility is to extend an existing library, but down the
line it makes sense to implement an R package from scratch.

5. Testing: With an implementation at hand, thorough testing needs to be done.
It makes sense to compare the predictive power of the AaJo forest with state
of the art methods used in biostatistics and insurance. This will also help in
determining which splitting rules work best in which contexts. Some splitting
rules may perfom better with high or low degrees of censoring for example.

A �nal consideration (relevant from both a theoretical and practical perspective) is
the question of incorporating left-truncation. Left-truncation is an essential problem
in life insurance and is therefore a highly relevant problem to work on. It is an
open question to what extend left-truncation a�ects both consistency results and
the performance of the algorithm in practice.

96



References

[1] Algebra of graphics, 2024. URL https://aog.makie.org/stable/.

[2] Tidyverse, 2024. URL https://www.tidyverse.org/.

[3] O. O. Aalen, Ø. Borgan, and H. K. Gjessing. Survival and Event History Anal-
ysis. Statistics for Biology and Health. Springer New York, NY, 1 edition, 2008.
ISBN 978-0-387-68560-1. doi: https://doi.org/10.1007/978-0-387-68560-1.

[4] P. K. Andersen, Ø. Borgan, R. D. Gill, and N. Keiding. Statistical Models Based
on Counting Processes. Springer Series in Statistics. Springer-Verlag New York,
1993. ISBN 0-387-97872-0.

[5] S. Asmussen and M. Ste�ensen. Risk and Insurance. Probability Theory and
Stochastic Modelling. Springer Cham, 1 edition, 2020. ISBN 978-3-030-35175-5.
doi: https://doi.org/10.1007/978-3-030-35176-2.

[6] M. Bladt and C. Furrer. Conditional Aalen�Johansen Estimation. 2024. URL
http://arxiv.org/pdf/2303.02119.

[7] B. Bolker, S. W. Park, J. Vonesh, J. Wilson, R. Schmitt, S. Holbrook, J. D.
Thomson, and R. S. Duncan. emdbook: Support Functions and Data for "Eco-
logical Models and Data", 2023. URL https://cran.r-project.org/
package=emdbook.

[8] L. Breiman. Bagging Predictors. Machine Learning, 24:123 � 140, 1996. doi: 10.
1023/A:1018054314350. URL https://link.springer.com/article/
10.1023/A:1018054314350.

[9] L. Breiman. Out-of-bag Estimation. 1996. URL https://api.
semanticscholar.org/CorpusID:17166335.

[10] L. Breiman. Random Forests. Machine Learning, 45:5 � 32, 2001. doi: 10.
1023/A:1010933404324. URL https://link.springer.com/article/
10.1023/A:1010933404324.

[11] L. Breiman, J. Friedman, R. A. Olshen, and C. J. Stone. Classi�cation and Re-
gression Trees. Chapman and Hall/CRC, 1 edition, 1984. ISBN 9781315139470.

[12] G. Broström. eha: Event History Analysis, 2024. URL https://cran.
r-project.org/package=eha. R package version 2.11.5.

[13] F. Castellares, S. C. Patricio, and A. Lemonte. On the Gompertz�Makeham
law: A useful mortality model to deal with human mortality. Brazilian Journal
of Probability and Statistics, 3(36):613�639, 2022.

[14] S. N. Cohen and R. J. Elliott. Stochastic Calculus and Applications. Probability
and Its Applications. Birkhäuser New York, NY, 2 edition, 2015. ISBN 978-1-
4939-2866-8. doi: https://doi.org/10.1007/978-1-4939-2867-5.

97

https://aog.makie.org/stable/
https://www.tidyverse.org/
http://arxiv.org/pdf/2303.02119
https://cran.r-project.org/package=emdbook
https://cran.r-project.org/package=emdbook
https://link.springer.com/article/10.1023/A:1018054314350
https://link.springer.com/article/10.1023/A:1018054314350
https://api.semanticscholar.org/CorpusID:17166335
https://api.semanticscholar.org/CorpusID:17166335
https://link.springer.com/article/10.1023/A:1010933404324
https://link.springer.com/article/10.1023/A:1010933404324
https://cran.r-project.org/package=eha
https://cran.r-project.org/package=eha


[15] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Je�rey, and D. E. Knuth.
On the Lambert W Function. Advances in Computational Mathematics, 5:
329 � 359, 1996. doi: https://doi.org/10.1007/BF02124750. URL https:
//link.springer.com/article/10.1007/BF02124750.

[16] D. R. Cox. Regression Models and Life-Tables. Journal of the Royal Statistical
Society. Series B (Methodological), 34(2):187�220, 1972. URL http://www.
jstor.org/stable/2985181.

[17] D. R. Cox and D. Oakes. Analysis of Survival Data. Chapman and Hall/CRC
New York, 1 edition, 1984. ISBN 9781315137438.

[18] B. Efron. Bootstrap Methods: Another Look at the Jackknife. The Annals
of Statistics, 7(1):1 � 26, 1979. doi: 10.1214/aos/1176344552. URL https:
//doi.org/10.1214/aos/1176344552.

[19] C. Furrer. Introduction to actuarial mathematics. Department of Mathematical
Sciences University of Copenhagen, 2 edition, 2024. ISBN 978-87-7125-287-3.
URL https://noter.math.ku.dk/matematik.htm.

[20] K. S. T. Gad and J. W. Nielsen. Reserves and cash �ows under stochas-
tic retirement. Scandinavian Actuarial Journal, 2016(10):876�904, 2016.
doi: 10.1080/03461238.2015.1028432. URL https://doi.org/10.1080/
03461238.2015.1028432.

[21] E. A. Gehan. A generalized Wilcoxon test for comparing arbitrarily singly-
censored samples. Biometrika, 52:203�23, 1965. URL https://api.
semanticscholar.org/CorpusID:8385578.

[22] R. D. Gill and S. Johansen. A Survey of Product-Integration with a View
Toward Application in Survival Analysis. The Annals of Statistics, 18(4):
1501�1555, 1990. ISSN 00905364. URL http://www.jstor.org/stable/
2241874.

[23] B. Gompertz. On the Nature of the Function Expressive of the Law of Human
Mortality, and on a New Mode of Determining the Value of Life Contingencies.
Philosophical Transactions of the Royal Society of London, 115:513�583, 1825.
URL http://www.jstor.org/stable/107756.

[24] E. Hansen. Stochastic Processes, volume 2. Institut for Matematiske Fag Køben-
havns Universitet, 5 edition. ISBN 978-87-71253-00-9.

[25] F. E. Harrell, R. M. Cali�, D. B. Pryor, K. L. Lee, and R. A. Rosati. Evaluating
the yield of medical tests. JAMA, 247(18):2543�2546, 1982. doi: 10.1001/
JAMA.1982.03320430047030.

[26] D. Harrison and D. L Rubinfeld. Hedonic housing prices and the de-
mand for clean air. Journal of Environmental Economics and Man-
agement, 5(1):81�102, 1978. doi: https://doi.org/10.1016/0095-0696(78)

98

https://link.springer.com/article/10.1007/BF02124750
https://link.springer.com/article/10.1007/BF02124750
http://www.jstor.org/stable/2985181
http://www.jstor.org/stable/2985181
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://noter.math.ku.dk/matematik.htm
https://doi.org/10.1080/03461238.2015.1028432
https://doi.org/10.1080/03461238.2015.1028432
https://api.semanticscholar.org/CorpusID:8385578
https://api.semanticscholar.org/CorpusID:8385578
http://www.jstor.org/stable/2241874
http://www.jstor.org/stable/2241874
http://www.jstor.org/stable/107756


90006-2. URL https://www.sciencedirect.com/science/article/
pii/0095069678900062.

[27] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York, NY, 2 edition, 2009. ISBN 978-
0-387-84857-0. doi: https://doi.org/10.1007/978-0-387-84858-7.

[28] T. Hothorn and B. Lausen. On the exact distribution of maximally se-
lected rank statistics. Computational Statistics & Data Analysis, 43(2):121�
137, 2003. ISSN 0167-9473. doi: https://doi.org/10.1016/S0167-9473(02)
00225-6. URL https://www.sciencedirect.com/science/article/
pii/S0167947302002256.

[29] E. Hsich, E. Z. Gorodeski, E. H. Blackstone, H. Ishwaran, and M. S. Lauer.
Identifying Important Risk Factors for Survival in Patients With Systolic
Heart Failure Using Random Survival Forests. Circulation: Cardiovascular
Quality and Outcomes, 4(1):39�45, 2011. doi: 10.1161/CIRCOUTCOMES.
110.939371. URL https://www.ahajournals.org/doi/abs/10.1161/
CIRCOUTCOMES.110.939371.

[30] H. Ishwaran and U. B. Kogalur. Random Survival Forests for R.
Rnews, pages 25 � 31, 2007. URL https://ishwaran.org/papers/
randomSurvivalForests.pdf.

[31] H. Ishwaran and U. B. Kogalur. Consistency of random survival forests.
Statistics & Probability Letters, 80(13):1056�1064, 2010. ISSN 0167-7152.
doi: 10.1016/j.spl.2010.02.020. URL https://www.sciencedirect.com/
science/article/pii/S0167715210000672.

[32] H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. Random
survival forests. The Annals of Applied Statistics, 2(3):841 � 860, 2008. doi:
10.1214/08-AOAS169. URL https://doi.org/10.1214/08-AOAS169.

[33] H. Ishwaran, M. Lu, and U. B. Kogalur. Fast Uni�ed Random Forests with
randomForestSRC. 2023. URL https://www.randomforestsrc.org/
articles/getstarted.html.

[34] M. Jacobsen. Statistical Analysis of Counting Processes. Lecture Notes in Statis-
tics. Springer New York, NY, 1 edition, 1982. ISBN 978-0-387-90769-7. doi:
https://doi.org/10.1007/978-1-4684-6275-3.

[35] M. Jacobsen. Point Process Theory and Applications. Probability and Its Ap-
plications. Birkhäuser Boston, MA, 1 edition, 2005. ISBN 978-0-8176-4215-0.
doi: https://doi.org/10.1007/0-8176-4463-6.

[36] S. Janitza and R. Hornung. On the overestimation of random forest's out-of-
bag error. 2018. doi: 10.1371/journal.pone.0201904. URL https://pubmed.
ncbi.nlm.nih.gov/30080866/.

99

https://www.sciencedirect.com/science/article/pii/0095069678900062
https://www.sciencedirect.com/science/article/pii/0095069678900062
https://www.sciencedirect.com/science/article/pii/S0167947302002256
https://www.sciencedirect.com/science/article/pii/S0167947302002256
https://www.ahajournals.org/doi/abs/10.1161/CIRCOUTCOMES.110.939371
https://www.ahajournals.org/doi/abs/10.1161/CIRCOUTCOMES.110.939371
https://ishwaran.org/papers/randomSurvivalForests.pdf
https://ishwaran.org/papers/randomSurvivalForests.pdf
https://www.sciencedirect.com/science/article/pii/S0167715210000672
https://www.sciencedirect.com/science/article/pii/S0167715210000672
https://doi.org/10.1214/08-AOAS169
https://www.randomforestsrc.org/articles/getstarted.html
https://www.randomforestsrc.org/articles/getstarted.html
https://pubmed.ncbi.nlm.nih.gov/30080866/
https://pubmed.ncbi.nlm.nih.gov/30080866/


[37] P. Jodrá. A closed-form expression for the quantile function of the
Gompertz�Makeham distribution. Mathematics and Computers in Simula-
tion, 79(10):3069�3075, 2009. doi: https://doi.org/10.1016/j.matcom.2009.
02.002. URL https://www.sciencedirect.com/science/article/
pii/S0378475409000445.

[38] J. D. Kalb�eisch and R. L. Prentice. The Statistical Analysis of Failure Time
Data. Wiley Series in Probability and Statistics. John Wiley & Sons, 2002.
ISBN 9780471363576. doi: 10.1002/9781118032985.

[39] J. D. Kalb�eisch and D. E. Schaubel. Fifty years of the cox model. An-
nual Review of Statistics and Its Application, 10(Volume 10, 2023):1�23,
2023. doi: https://doi.org/10.1146/annurev-statistics-033021-014043. URL
https://www.annualreviews.org/content/journals/10.1146/
annurev-statistics-033021-014043.

[40] O. Kallenberg. Foundations of Modern Probability. Probability Theory and
Stochastic Modelling. Springer Cham, 3 edition, 2021. ISBN 978-3-030-61871-
1. doi: https://link.springer.com/book/10.1007/978-3-030-61871-1.

[41] A. Kassambara. ggpubr: 'ggplot2' Based Publication Ready Plots, 2023.
URL https://cran.r-project.org/web/packages/ggpubr/index.
html.

[42] M. LeBlanc and J. Crowley. Survival Trees by Goodness of Split. Journal of
the American Statistical Association, 88(422):457�467, 1993. ISSN 01621459,
1537274X. URL http://www.jstor.org/stable/2290325.

[43] F. Leisch, E. Dimitriadou, and K. Hornik. mlbench: Machine Learning
Benchmark Problems, 2024. URL https://cran.r-project.org/web/
packages/mlbench/.html.

[44] E. Lenglart. Relation de domination entre deux processus. Annales de l'institut
Henri Poincaré, 13(2):171 � 179, 1977. URL http://www.numdam.org/
item/AIHPB_1977__13_2_171_0/.

[45] S. Lo and K. Singh. The Product-Limit Estimator and the Bootstrap: Some
Asymptotic Representations. Probability Theory and Related Fields, 71:455 �
465, 1986. doi: 10.1007/BF01000216. URL https://doi.org/10.1007/
BF01000216.

[46] E. Longato, M. Vettoretti, and B. Di Camillo. A practical perspective on the
concordance index for the evaluation and selection of prognostic time-to-event
models. Journal of Biomedical Informatics, 108:103496, 2020. doi: https://doi.
org/10.1016/j.jbi.2020.103496. URL https://www.sciencedirect.com/
science/article/pii/S1532046420301246.

100

https://www.sciencedirect.com/science/article/pii/S0378475409000445
https://www.sciencedirect.com/science/article/pii/S0378475409000445
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-033021-014043
https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-033021-014043
https://cran.r-project.org/web/packages/ggpubr/index.html
https://cran.r-project.org/web/packages/ggpubr/index.html
http://www.jstor.org/stable/2290325
https://cran.r-project.org/web/packages/mlbench/.html
https://cran.r-project.org/web/packages/mlbench/.html
http://www.numdam.org/item/AIHPB_1977__13_2_171_0/
http://www.numdam.org/item/AIHPB_1977__13_2_171_0/
https://doi.org/10.1007/BF01000216
https://doi.org/10.1007/BF01000216
https://www.sciencedirect.com/science/article/pii/S1532046420301246
https://www.sciencedirect.com/science/article/pii/S1532046420301246


[47] W. M. Makeham. On the Law of Mortality and the Construction of Annuity
Tables. The Assurance Magazine, and Journal of the Institute of Actuaries, 8
(6):301�310, 1860. URL http://www.jstor.org/stable/41134925.

[48] W. M. Makeham. On the Law of Mortality. Journal of the Institute of Actuaries
(1866-1867), 13(6):325�358, 1867. URL http://www.jstor.org/stable/
41134517.

[49] W. M. Makeham. On the Further Development of Gompertz's Law (Concluded).
Journal of the Institute of Actuaries (1886-1994), 28(4):316�332, 1890. URL
http://www.jstor.org/stable/41135946.

[50] M. Schmid, M. N. Wright, and A. Ziegler. On the use of Harrell's C for
clinical risk prediction via random survival forests. Expert Systems with
Applications, 63:450�459, 2016. doi: https://doi.org/10.1016/j.eswa.2016.
07.018. URL https://www.sciencedirect.com/science/article/
pii/S0957417416303633.

[51] M. R. Segal. Regression Trees for Censored Data. Biometrics, 44(1):35�47,
1988. ISSN 0006341X, 15410420. URL http://www.jstor.org/stable/
2531894.

[52] T. M. Therneau, T. Lumley, A. Elizabeth, and C. Cynthia. survival: Survival
Analysis, 2024. URL https://cran.r-project.org/web/packages/
survival/index.html.

[53] V. Volterra. Sulle equazioni di�erenziali lineari. 1887. URL
https://www.rcin.org.pl/impan/dlibra/publication/181806/
edition/147683#info.

[54] M. N. Wright and A. Ziegler. ranger: A Fast Implementation of Random Forests
for High Dimensional Data in C++ and R. Journal of Statistical Software, 77(1):
1 � 17, 2017. doi: 10.18637/jss.v077.i01. URL https://www.jstatsoft.
org/index.php/jss/article/view/v077i01.

101

http://www.jstor.org/stable/41134925
http://www.jstor.org/stable/41134517
http://www.jstor.org/stable/41134517
http://www.jstor.org/stable/41135946
https://www.sciencedirect.com/science/article/pii/S0957417416303633
https://www.sciencedirect.com/science/article/pii/S0957417416303633
http://www.jstor.org/stable/2531894
http://www.jstor.org/stable/2531894
https://cran.r-project.org/web/packages/survival/index.html
https://cran.r-project.org/web/packages/survival/index.html
https://www.rcin.org.pl/impan/dlibra/publication/181806/edition/147683#info
https://www.rcin.org.pl/impan/dlibra/publication/181806/edition/147683#info
https://www.jstatsoft.org/index.php/jss/article/view/v077i01
https://www.jstatsoft.org/index.php/jss/article/view/v077i01


A The JuliaExtendableTrees library

In this section, we provide an overview of the JuliaExtendableTrees library,
its structure and functionalities. We also highlight certain implementations.

A.1 Overview of the library

JuliaExtendableTrees is a library for performing prediction using decision trees
and random forests in Julia. The library supports classi�cation, regression and
survival trees. The library is composed of eight .jl �les with seven of them structured
as in the following �gure.

survival.jl criteria.jl splitter.jl

tree.jl

forest.jlpredict.jlerror.jl

Figure 21: An illustration of the hierarchy of the �les in the
JuliaExtendableTrees library. An arrow A → B means that �le B de-
pends on �le A.

The eighth �le, JuliaExtendableTrees.jl, depends on all other �les and is the
only �le one needs to include to use the library. It also contains wrapper functions
for growing trees and forests as well as functions for printing useful output to the
terminal. An overview of the contents of the remaining �les are below.

� criteria.jl: All splitting rule functions. The naming convention is that
any function to be used by splitter.jl must have a name starting with
L_ e.g. L_log_rank or L_squared_error. The other functions in the
�le are helper functions. The �le currently contains two splitting rules for
classi�cation (Gini coe�cient and entropy), two for regression (squared error,
absolute error) and �ve for survival (log-rank, conservation of events splitting,
log-rank score, approximate log-rank and C-index splitting).

� splitter.jl: Contains functions for �nding best splits for each type of tree.
The best split procedure is divided into two parts. The �rst is a function to
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�nd the best split for a given feature (best_feature_split for classi�-
cation and regression and best_feature_split_Survival for survival).
The second is a function for �nding the best overall split. These are called
best_split_<Type>.

� tree.jl: Functions for growing each type of tree. Contains structs for
nodes in classi�cation, regression and survival as well as a tree struct.

� forest.jl: Contains a forest struct and a function for bootstrapping data
that also saves OOB indices. Also contains functions for growing each type of
forest.

� predict.jl: Contains functions for predicting from trees and all types of
forests. A general function for computing which indices are OOB for a given
observation is provided. Functions to compute all OOB predictions are also
provided.

� error.jl: Contains functions to compute errors for all types of trees and
forests. For classi�cation, misclassi�cation error and R2 error is provided. For
regression, mean squared error and R2 error is provided, while for survival, the
error is given by 1−C with C denoting Harrell's C-index. All error functions
contain the option to only use OOB observations in the computation, while
for survival, a list of predicted values (Nelson�Aalen estimators) may also be
provided. If such a list is not provided, predictions are computed manually. All
types of forests have functions of the form OOB_error_<type> which com-
putes an approximation to the OOB error using all OOB observations which
does not take ties between features into account at the bene�t of substantial
improvements in speed.

� survival.jl: Helper functions for everything survival related. Contains
functions for computing the Nelson�Aalen and Kaplan�Meyer estimators as
well as a wide range of helper functions to compute quantities used by survival
splitting rules.

A.2 Using the library

Here we showcase some basic usage of the library. We start simple by growing a
survival decision tree on the pbc dataset. The �rst step is to load the library, read
in the data and extracting the response and the features.

� �
include("JuliaExtendableTrees.jl")
df = CSV.read("pbc.csv", DataFrame)
y = Matrix{Float64}(df[:, [:days, :status]])
X = Matrix{Float64}(df[:, Not([:days, :status])])� �

The following code grows a single decision tree using the grow_tree function. This
function requires four arguments and has several optional arguments. One needs to
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supply the features, the response, the type and the splitting rule. We grow a survival
tree with the log-rank splitting rule as follows.

� �
tree = grow_tree(X, y, "Survival", L_log_rank)� �

For a tree, one can further specify the minimum node size, the maximum depth of
the tree, the number of split points used in a split and the number of features used
at each split. If none of these are set manually, default values are used. Below is
code for growing a tree with each hyperparameter speci�ed manually (in this case
to the default values).

� �
tree = grow_tree(X, y, "Survival", L_log_rank; min_node_size = 15, max_depth = 0,

n_split = 0, n_features = Int(round(sqrt(size(X, 2)))))� �
One can print information about the �tted tree to the terminal using the print_tree
function. This function returns a vector of strings with information about each node
plus some information about the tree itself. The code

� �
print_tree(tree)� �

yields the following output.

� �
33-element Vector{String}:
"Type of tree: Survival"
"List of nodes:"
"Depth: 1 Feature: 8 Threshold: 6.45"
"Depth: 2 Feature: 11 Threshold: 109.0"
"Depth: 3 Feature: 10 Threshold: 3.3049999999999997"
...

"Depth: 3 Value: [326.0 0.058823" ··· 351 bytes ··· "0758] #Observations: 34 (Leaf)"
"Depth: 3 Value: [41.0 0.05; 51." ··· 404 bytes ··· "3485] #Observations: 40 (Leaf)"
"Number of nodes: 29"
"Number of terminal nodes: 15"� �
For every node, the depth is printed. If the node is not terminal, the feature index
and the threshold value is provided. If the node is terminal, the value (in this case
the Nelson�Aalen estimator) is printed along with the number of observations. We
now turn to prediction. The following code predicts the Nelson�Aalen estimator
based on the �rst observation in the training data.

� �
predict(tree, X[1, :])� �
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This yields the output

� �
17×2 Matrix{Float64}:

41.0 0.05
51.0 0.102632
71.0 0.158187
77.0 0.217011

131.0 0.279511
...

890.0 1.14774
930.0 1.31441
943.0 1.51441
2540.0 2.51441� �
that is, a matrix with the �rst column the jump times and the second column the
corresponding value of the cumulative hazard function. Computing the predicted
value of a whole dataset is easy. To illustrate, if one wants to compute all predictions
of the training data, one simply writes

� �
predict(tree, X)� �

Computing an error estimate (the C-index error) is done in the following way. The
error_Survival function needs a tree or forest as its �rst input, a test dataset
as its second input and a test response as its third output. Running the code

� �
error_Survival(tree, X, y)� �

yields the number 0.19019219751028704 for this particular run. Variations should be
expected when running the code multiple times since single decision trees have high
variance. We now turn to forests. Growing a forest is very similar to a tree, although
more hyperparameters are available. If one wants to use default parameters and the
log-rank splitting rule, one can simply write the following.

� �
forest = grow_forest(X, y, "Survival", L_log_rank)� �

To obtain useful information on this forest, use the print_forest function.

� �
print_forest(forest)� �

For this particular run, we get the following output to the terminal.
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� �
Type of forest: Survival
Number of observations: 276
Number of features available: 17
Number of trees: 500
Maximum depth of a tree: No maximum depth
Minimum size of a node: 5
Number of splitting points used: 10
Number of features used in a split: 4
Average number of terminal nodes: 26.866� �

The average number of terminal nodes is a nice bit of information for the model
which says something about the tree complexity. For a forest, there are two ways to
predict. Consider the �rst feature in the dataset. The classical ensemble is computed
with

� �
predict(forest, X[1, :])� �

which yields

� �
109×2 Matrix{Float64}:

41.0 0.0556207
51.0 0.118365
71.0 0.144286
77.0 0.180587

110.0 0.199799
...

3839.0 2.27065
3853.0 2.27065
4079.0 2.27065
4191.0 2.27065� �
An alternative is to only average over the predictions where the �rst feature is OOB.
This is done as follows.

� �
predict(forest, X[1, :]; OOB = true)� �

yielding the slightly di�erent result

� �
109×2 Matrix{Float64}:

41.0 0.0599531
51.0 0.127831
71.0 0.160415
77.0 0.202532

110.0 0.22694
...
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3839.0 2.24601
3853.0 2.24601
4079.0 2.24601
4191.0 2.24601� �
The exact same syntax is used for predicting for more values. Simply replace X[1,
:] with a dataset. One should be aware of the options that exist for computing
the error for a forest. One choice is to simply use the error function for that
type, in this case error_Survival. Say we want to compute the training error by
supplying all the training data as test data. This is done by

� �
error_Survival(forest, X, y)� �

which yields 0.0902130319287463. If we want the OOB error, we simply do

� �
error_Survival(forest, X, y; OOB = true)� �

which gives 0.17089431741236527. Since we are supplying the whole dataset, an
alternative is to use the (often much faster) function OOB_error_Survival

� �
OOB_error_Survival(forest)� �

which yields the exact same result since there are no ties in the feature data.

We stress that the library currently has the limitation that it cannot handle categor-
ical data. The library converts the matrix of features into a matrix of �oats. This is
not an issue for 0/1 data, but it means that the library cannot handle features that
are not representable as �oats, such as strings. For a feature with two levels, �yes� or
�no�, say, this is not an issue, since such data can simply be converted to 0/1 data.
But for categorical data with more than two levels, the library does not group the
data when determining the best split and thus some optimal splits may be lost.

A.3 Essential functions and their implementations

A.3.1 Determining the best split (survival)

The splitter functions are very similar for the di�erent types of trees. We choose
to present the code for survival trees. The following helper function splits a feature
matrix into two sets of indices with left_ind being the indices for the data in the
left node and analogously for right_ind.
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� �
function split_dataset(X::Matrix{Float64}, feature::Int, threshold::Float64)

left_ind = X[:, feature] .<= threshold
right_ind = .!left_ind
return left_ind, right_ind

end� �
The following helper function determines the best split given a feature in the form
of an index (integer) and a sorted list of threshold values with no duplicates.

� �
function best_feature_split_Survival(X::Matrix{Float64}, y::Matrix{Float64},
L::Function, feature::Int, min_node_size::Int, thresholds::Array{Float64})

best_threshold = nothing
best_split_val = -1
best_left_ind = nothing
best_right_ind = nothing

n = length(thresholds)
mid = Int(ceil(n/2))

# check the first half of the splits
for j in 1:(mid - 1)

left_ind, right_ind = split_dataset(X, feature, thresholds[mid - j])

# if the split creates a node with too few data points, skip the split
# entirely and all following splits (works because thresholds is sorted)
if sum(left_ind) < min_node_size || sum(right_ind) < min_node_size

break
end

l = L(X, y, feature, thresholds[mid - j])
if l > best_split_val

best_threshold = (thresholds[mid - j] + thresholds[mid - j + 1])/2
best_split_val = l
best_left_ind = left_ind
best_right_ind = right_ind

end
end

# check the second half of the splits
for j in mid:n

left_ind, right_ind = split_dataset(X, feature, thresholds[j])

# if the split creates a node with too few data points, skip the split
# entirely and all following splits
if sum(left_ind) < min_node_size || sum(right_ind) < min_node_size

break
end

l = L(X, y, feature, thresholds[j])
if l > best_split_val
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if j < n
best_threshold = (thresholds[j] + thresholds[j + 1])/2

else
best_threshold = thresholds[j]

end
best_split_val = l
best_left_ind = left_ind
best_right_ind = right_ind

end
end
# return the best split for this particular feature
return best_left_ind, best_right_ind, best_threshold, best_split_val

end� �
Some comments are in order. Since this function is the workhorse of the library,
several attempts have been made to save computations. Since the threshold values
thresholds are sorted and contain no duplicates, one can start iterating from the
middle. If an illegal split occurs (the number of observations in one of the nodes is
too small), all subsequent splits away from the middle in that direction will also be
illegal and can thus be skipped. When the best threshold is saved, we choose the
average of the current best threshold and the next. This is to improve stability when
predicting using new data. This function is applied to each feature available in a
split using the following function.

� �
function best_split_Survival(X::Matrix{Float64}, y::Matrix{Float64},
L::Function, min_node_size::Int, n_features::Int, n_split::Int)

best_feature = nothing
best_threshold = nothing
best_split_val = -1
best_left_ind = nothing
best_right_ind = nothing

# randomly select n_features features to split on
features = sample(1:size(X, 2), n_features, replace = false)
for i in features

# select the unique values for the given feature
thresholds = unique(X[:, i])
# only use n_split different threshold values (all are used if n_split = 0
# or n_split is larger than the number of unique values)
if n_split != 0 && n_split < length(thresholds)

thresholds = sort(sample(thresholds, n_split, replace = false))
else

thresholds = sort(thresholds)
end
best_left_ind_i, best_right_ind_i, best_threshold_i, best_split_val_i =
best_feature_split_Survival(X, y, L, i, min_node_size, thresholds)

if best_split_val_i > best_split_val
best_feature = i
best_threshold = best_threshold_i
best_split_val = best_split_val_i
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best_left_ind = best_left_ind_i
best_right_ind = best_right_ind_i

end
end

# return the overall best split
return best_left_ind, best_right_ind, best_feature, best_threshold,
best_split_val

end� �
A.3.2 Some criteria functions

When computing the Gini coe�cient or the entropy, it is necessary to compute
proportions in the labels. This is done using dictionaries in Julia as follows.

� �
function proportions(y::Array{Int})::Array{Float64}

counts = Dict{eltype(y), Int}()
for elem in y

counts[elem] = get(counts, elem, 0) + 1
end
collect(values(counts))/length(y)

end� �
This allows us to compute the Gini coe�cient easily.

� �
function Gini_coefficient(y::Array{Int})::Float64

prop = proportions(y)
1 - sum(prop .ˆ2)

end

function L_Gini_coefficient(X::Matrix{Float64}, y::Array{Int},
left_ind::BitArray{1}, right_ind::BitArray{1})::Float64

y_left = y[left_ind]
y_right = y[right_ind]
Gini_coefficient(y) -(length(y_left) * Gini_coefficient(y_left)
+ length(y_right) * Gini_coefficient(y_right))/length(y)

end� �
The function L_Gini_coefficient is one of two possible choices for splitting
rules for classi�cation. As for regression, the most popular splitting rule is the
squared error (called L_squared_error), which is computed as follows.

� �
function squared_error(y::Array{Float64})::Float64

sum(y .ˆ2)/length(y) - (sum(y)/length(y))ˆ2
end

function L_squared_error(X::Matrix{Float64}, y::Array{Float64},
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left_ind::BitArray{1}, right_ind::BitArray{1})::Float64
y_left = y[left_ind]
y_right = y[right_ind]
squared_error(y) - (length(y_left) * squared_error(y_left)
+ length(y_right) * squared_error(y_right))/length(y)

end� �
We also provide an example of a splitting rule in the survival setup. The most
popular choice is the log-rank splitting rule. The split value is computed in the
function L_log_rank given by

� �
function L_log_rank(X::Matrix{Float64}, y::Matrix{Float64}, feature::Int,
threshold::Float64)::Float64

t, Y1, d1, Y2, d2 = survival_criteria_helper(X, y, feature, threshold)
Y = Y1 + Y2
d = d1 + d2

sum_num = 0
sum_den = 0
for i in 1:length(t)

if Y[i] < 2 || Y1[i] < 1
break

end
if d[i] > 0

sum_num += d1[i] - Y1[i] * d[i] / Y[i]
sum_den += d[i] * (Y1[i] / Y[i]) * (1 - Y1[i]/Y[i])

* (Y[i] - d[i]) / (Y[i] - 1)
end

end

if sum_den != 0
return(abs(sum_num/sqrt(sum_den)))

else
return(-1)

end
end� �

The input y is a matrix with the �rst column containing the observed survival times
and the second containing the censoring indicators. survival_criteria_helper
is a helper function for computing the vectors of unique event times in the parent
node t as well as the vectors of individuals at risk and deaths at the times in t in
both nodes Y1, d1, Y2, d2 (see the section on random survival forests above). The
function is found in the survival.jl �le and is given by

� �
function survival_criteria_helper(X::Matrix{Float64}, y::Matrix{Float64},
feature::Int, threshold::Float64)

# select the (unique) true survival times from y
t = sort(unique(y[y[:, 2] .== 1, :][:, 1]))
N = length(t)
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n = size(y, 1)

# compute the vectors of individuals at risk, Y, and the
number of deaths, d for each node

Y1 = Array{Int}(undef, N)
Y2 = Array{Int}(undef, N)
d1 = Array{Int}(undef, N)
d2 = Array{Int}(undef, N)
for i in 1:N

Y1_res::Int = 0
Y2_res::Int = 0
d1_res::Int = 0
d2_res::Int = 0

for l in 1:n
if y[l, 1] >= t[i]

if X[l, feature] <= threshold
Y1_res += 1

else
Y2_res += 1

end
end
if y[l, 1] == t[i] && y[l, 2] == 1

if X[l, feature] <= threshold
d1_res += 1

else
d2_res += 1

end
end

end
Y1[i] = Y1_res
Y2[i] = Y2_res
d1[i] = d1_res
d2[i] = d2_res

end

return(t, Y1, d1, Y2, d2)
end� �

This helper function is used in every criteria function for survival except for C-index
splitting.

A.3.3 Growing a tree

Growing a tree works pretty much in the same way for all types of trees. We
demonstrate for survival trees. We de�ne structs SurvivalNode and Tree given
as follows.

� �
struct SurvivalNode

feature::Union{Int, Nothing} # index of the feature split upon
threshold::Union{Float64, Nothing} # the threshold for the split
left::Union{SurvivalNode, Nothing} # left daughter
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right::Union{SurvivalNode, Nothing} # right daughter
depth::Int # depth of the node
num::Union{Int, Nothing} # number of observed events in the node
val::Union{Matrix{Float64}, Nothing} # predicted value of the node

end

struct Tree
root::Union{ClassificationNode, RegressionNode, SurvivalNode} # root node
type::String # type
n_terminal_nodes::Int # number of terminal nodes in the tree

end� �
The following function builds a tree recursively. It checks the two stopping conditions
(maximum depth reached or the minimum node size is violated) and becomes a
terminal node if any of them are ful�lled. In that case, we don't need to save a feature,
threshold or any daughter nodes. We furthermore compute a value. Since we are
growing a survival tree, value_Survival computes the Nelson�Aalen estimator
based on the survival data y passed to the node. If the stopping criteria are not
met, we compute the best split. If such a split is not found (corresponding to the
best split value being −1), we again declare the node terminal. If not, we call the
function again for the daughters and remember to update the depth reached depth.
Node that we are also returning a number in addition to a SurvivalNode. This
number is used to recursively compute the number of terminal nodes in the tree,
which is why we in the case of a split return the sum of the number of terminal
nodes for both daughters.

� �
function tree_builder_Survival(X::Matrix{Float64}, y::Matrix{Float64}, depth::Int,
L::Function, max_depth::Int, min_node_size::Int, n_features::Int, n_split::Int)

# a node should be declared terminal if the max_depth is reached or if the
number of true deaths falls below min_node_size
if depth == max_depth || size(X, 1) < 2 * min_node_size

return(SurvivalNode(nothing, nothing, nothing, nothing, depth, length(y),
value_Survival(y)), 1)

end

left_ind, right_ind, feature, threshold, split_val =
best_split_Survival(X, y, L, min_node_size, n_features, n_split)

# if the best split is no split, the node is also declared terminal
if split_val < 0

return(SurvivalNode(nothing, nothing, nothing, nothing, depth,
length(y), value_Survival(y)), 1)

end

# make daughters
left_node, n_terminal_nodes_left = tree_builder_Survival(X[left_ind, :],
y[left_ind, :], depth + 1, L, max_depth, min_node_size, n_features, n_split)
right_node, n_terminal_nodes_right = tree_builder_Survival(X[right_ind, :],
y[right_ind, :], depth + 1, L, max_depth, min_node_size, n_features, n_split)
return(SurvivalNode(feature, threshold, left_node, right_node, depth, nothing,
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nothing), n_terminal_nodes_left + n_terminal_nodes_right)
end� �

With the recursive tree-builder in place, the following function actually grows the
tree.

� �
function grow_tree_Survival(X::Matrix{Float64}, y::Matrix{Float64}, L::Function,
max_depth::Int, min_node_size::Int, n_features::Int, n_split::Int)

root, n_terminal_nodes = tree_builder_Survival(X, y, 1, L, max_depth,
min_node_size, n_features, n_split)
return(Tree(root, "Survival", n_terminal_nodes))

end� �
A.3.4 Growing a forest

A forest is given as the following struct.

� �
mutable struct Forest

X::Matrix{Float64} # training data features
y # training data labels
trees::AbstractArray{Tree} # collection of trees
type::String # type
max_depth::Int # maximum depth of a tree
min_node_size::Int # maximum size of a node
n_features::Int # number of features used in each split
n_split::Int # maximum number of thresholds

# considered in each split
bootstrap_indices::BitMatrix # a matrix where each column is a

# bitvector indicating which datapoints
# are in the sample

avr_number_terminal_nodes::Float64 # average number of terminal nodes
# in a tree

end� �
All grow_forest functions use the following helper function for the bootstrapping
procedure.

� �
function bootstrap_data(n::Int, n_trees::Int, sfrac::Float64, swr::Bool)

bootstrap_indices = falses(n, n_trees)
sample_indices = reduce(hcat, [sample(1:n, Int(round(n * sfrac)),
replace = swr) for _ in 1:n_trees])
for i in 1:n_trees

bootstrap_indices[sample_indices[:, i], i] .= 1
end

# return the indices in both bitvector format and int format
# (the latter is used to optimise performance)
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return bootstrap_indices, sample_indices
end� �

The function makes a bootstrap sample n_trees times. It also computes a ma-
trix where each column is a bitvector where a one in the i'th row indicates that
the observation is part of that bootstrap sample. This is used to e�ectively ap-
proximate the OOB error later on. The following function grows a survival forest
(the grow_forest_Classification and grow_forest_Regression func-
tions are more or less identical).

� �
function grow_forest_Survival(X::Matrix{Float64}, y::Matrix{Float64},
L::Function, max_depth::Int = 0, min_node_size::Int = 10,
n_features::Int = Int(round(sqrt(size(X, 2)))), n_split::Int = 10,
n_trees::Int = 500, sfrac::Float64 = 0.7, swr::Bool = false)

# choosing n_features larger than the number of features
# simply means no randomness
if n_features > size(X, 2)

n_features = size(X, 2)
end

trees = Array{Tree}(undef, n_trees)
n = size(X, 1)
bootstrap_indices, sample_indices =
bootstrap_data(n, n_trees, sfrac, swr)
total_terminal_nodes = 0

# grow the trees from the bootstrap data
@threads for i in 1:n_trees

trees[i] = grow_tree_Survival(X[sample_indices[:, i], :],
y[sample_indices[:, i], :], L, max_depth, min_node_size,
n_features, n_split)
total_terminal_nodes += trees[i].n_terminal_nodes

end

return(Forest(X, y, trees, "Survival", max_depth, min_node_size,
n_features, n_split, bootstrap_indices, total_terminal_nodes/n_trees))

end� �
The @threads in the for loop means that Julia uses multithreading. Depending on
the setup, it may require some tweaking to ensure that multithreading is actually
applied. In Visual Studio Code for example, the number of threads should be set in
the settings.json �le.

A.3.5 Predicting values

Predicting the value of a tree works the same way for all types. Simply drop the
observation down the tree. In code, this is done as follows.
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� �
function predict(tree::Tree, x::Array{Float64})

current_node = tree.root
while current_node.val === nothing # not yet in a terminal node

if x[current_node.feature] <= current_node.threshold
current_node = current_node.left

else
current_node = current_node.right

end
end
return current_node.val

end� �
It is then easy to extend to the case where x is a whole matrix of observations.
When computing the OOB error for some observation in the dataset, it is necessary
to determine the indices of the trees where the observation is OOB. This is done as
follows.

� �
function OOB_indices(forest::Forest, x::Array{Float64})

B = length(forest.trees)

# by default, x is not OOB
OOB = falses(B)

# find the indices of all rows equal to x in the original data
x_ind = findall(row -> row == x, eachrow(forest.X))

@threads for i in 1:B
# if none of the indices in a bootstrap set is one, x is OOB
if sum(forest.bootstrap_indices[:, i][x_ind]) == 0

OOB[i] = true
end

end
OOB

end� �
The following helper function computes the predicted value of x for every tree in
the forest.

� �
function predicted_labels(forest::Forest, x::Array{Float64}, OOB::Bool = false)

if OOB
oob = OOB_indices(forest, x)
trees = forest.trees[oob]

else
trees = forest.trees

end

n = length(trees)
res = Array{Any}(undef, n)
@threads for i in 1:n
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res[i] = predict(trees[i], x)
end

res
end� �

With these helper functions in place, it is easy to write functions for computing
the aggregated prediction over the forest in the case of classi�cation or regression.
Simply compute the median or the mean of the predicted labels. For survival, the
situation is more complicated since each predicted label is a Nelson�Aalen estimator.
Such a value is given as a matrix with two columns consisting of the jump times and
the cumulative hazard. These need to be aggregated into one jump function over all
event times in the data.

� �
function predict_Survival(forest::Forest, x::Array{Float64}, t::Array{Float64},
OOB::Bool = false)

ensemble_NA(predicted_labels(forest, x, OOB), t)
end� �

The function ensemble_NA computes the ensemble Nelson�Aalen estimator.

� �
function ensemble_NA(predictions, t::Array{Float64})

N = length(t)
B = length(predictions)
jump_values = zeros(Float64, N, B)

# compute the matrix of jump values in terms of the event times
for j in 1:B

val = predictions[j]
last_value = 0
for i in 1:N

k = 1
while k <= size(val, 1) && val[k, 1] <= t[i]

if val[k, 1] == t[i]
last_value = val[k, 2]

end
k += 1

end
# if no val[k, 1] match the t[i], no jumps have happened yet
# and so the jump_value is zero
if k != 1

jump_values[i, j] = last_value
end

end
end

average_values = mean(jump_values, dims = 2)
hcat(t, average_values)

end� �
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All types of forests have a corresponding OOB_predict function which computes
the OOB predictions when the whole training data is supplied. The function ac-
tually computes an approximation based on the OOB indices from the function
bootstrap_data. The approximation lies in the fact that this function does not
take ties between feature vectors into account. If no ties are present, the computed
predictions are exact. Since the OOB indices are supplied instead of manually com-
puted for every observation in the training data, the predictions are computed much
faster. The code is very similar for the three types of forest. For survival forests, the
code is given below.

� �
function OOB_predict_Survival(forest::Forest)

n = size(forest.X, 1)
predictions = Array{Matrix{Float64}}(undef, n)
OOB_ind = transpose(.!forest.bootstrap_indices)

# save the sorted unique event times for later
t = sort(unique(forest.y[forest.y[:, 2] .== 1, :][:, 1]))

@threads for i in 1:n
# choose the trees where X[i, :] is OOB
trees = forest.trees[OOB_ind[:, i]]
m = length(trees)

# compute the predictions over all the trees where X[i, :] is OOB
temp_predictions = Array{Matrix{Float64}}(undef, m)
for j in 1:m

temp_predictions[j] = predict(trees[j], X[i, :])
end

# compute the final prediction for X[i, :] as the mode
# if X[i, :] is not OOB for any dataset, set the prediction
# to be the mode over the whole dataset
if isempty(temp_predictions) == false

predictions[i] = ensemble_NA(temp_predictions, t)
else

predictions[i] = ensemble_NA(forest.y, t)
end

end
predictions

end� �
A.3.6 Computing the error

For classi�cation, we use the misclassi�cation rate as error. The library contains
functions for both the misclassi�cation rate and the R2 error. For forests, the code
looks as follows.

� �
function error_Classification(forest::Forest, X_test::Matrix{Float64},
y_test::Array{Int64}, OOB::Bool = false)::Float64
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1 - mean(predict(forest, X_test, OOB) .== y_test)
end� �

� �
function R2_Classification(forest::Forest, X_test::Matrix{Float64},
y_test::Array{Int64}, OOB::Bool = false)::Float64

predicted = predict(forest, X_test, OOB)
1 - mean(predicted .== y_test)/mean()

end� �
Computing the mean squared error and the corresponding R2 estimate for regres-
sion forests is very similar. When one wishes to compute the OOB error based on the
whole dataset, one can compute an approximation based on the OOB_predict_Classification
function as follows.

� �
function OOB_error_Classification(forest::Forest)::Float64

predicted_values = OOB_predict_Classification(forest)
1 - mean(predicted_values .== forest.y)

end� �
� �
function OOB_R2_Classification(forest::Forest)::Float64

predicted_values = OOB_predict_Classification(forest)
1 - (1 - mean(predicted_values .== forest.y))/
(1 - mean(mode(forest.y) .== forest.y))

end� �
Similar OOB error functions are provided for regression and survival forests. For
survival, the error is given by one minus Harrell's C-index. The function for com-
puting the C-index based on a vector of outcomes is based directly on the description
above and is given as follows.

� �
function Harrell_C(outcomes::Vector{Float64}, y::Matrix{Float64})

# initialise numerator and denominator
Concordance = 0
Permissible = 0
n = length(outcomes)

for i in 1:n
for j in (i + 1):n

# if T_i < T_j and delta_i = 0, the pair is not comparable
if y[i, 1] < y[j, 1] && y[i, 2] == 0

continue
end
# similarly with i and j reversed
if y[j, 1] < y[i, 1] && y[j, 2] == 0
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continue
end
# if T_i = T_j and delta_i = delta_j, the pair is also
# considered incomparable
if y[i, 1] == y[j, 1] && y[i, 2] == y[j, 2]

continue
end

# if T_i < T_j and outcomes[i] > outcomes[j], the model
# predicts correctly (similarly for i and j reversed), so
# add 1 to Concordance
# if outcomes[i] = outcomes[j], the model is indecisive,
# so add 0.5 to Concordance
if y[i, 1] < y[j, 1] && outcomes[i] > outcomes[j]

Concordance += 1
elseif y[j, 1] < y[i, 1] && outcomes[j] > outcomes[i]

Concordance += 1
elseif outcomes[i] == outcomes[j]

Concordance += 0.5
end

Permissible += 1
end

end

return Concordance/Permissible
end� �

To compute the C-index for predictions on a �tted forest, one uses the following
function.

� �
function Harrell_C(forest::Forest, X_test::Matrix{Float64},
y_test::Matrix{Float64}; OOB::Bool = false, predicted = nothing)::Float64

# if predictions are not supplied, compute them from scratch
if predicted === nothing

predicted = predict(forest, X_test, OOB)
end

Harrell_C(predicted, y_test)
end� �

It is then a trivial matter to compute the error for the forest. In contrast to regression
and classi�cation, it is furthermore possible to supply a vector of predicted values
(i.e. a vector of Nelson�Aalen estimators) if these are already computed.

� �
function error_Survival(forest::Forest, X_test::Matrix{Float64},
y_test::Matrix{Float64}; OOB::Bool = false, predicted = nothing)::Float64

1 - Harrell_C(forest, X_test, y_test; OOB = OOB, predicted = predicted)
end� �
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As for regression and classi�cation, it is also possible to directly compute an OOB
error approximation with the OOB_predict_Survival function.

A.4 Overall comments on the code

Before closing this section, we provide some of the considerations that went into
designing this library. First and foremost, the code is very functional in nature. An
alternative would be to write the library in an object-oriented fashion. The main
motivation for this design choice is simplicity and for making the library easier to
extend. For example, adding additional splitting rules is as easy as writing a single
function in the criteria.jl �le.

When writing a function, the type of each parameter (::Forest, ::Float64 etc.)
as well as the output type of the function is speci�ed in advance whenever possible,
even though Julia is not a statically typed language. The primary reason for this
is philosophical. Specifying the type makes it easier to understand how to apply a
function, and it makes error handling easier. In some cases, specifying types also
improves performance, which is the reason there are three node objects (one for each
type of tree). If an object in a struct is not speci�ed, the type has to be determined at
runtime which slows performance, since the CPU handles di�erent types via di�erent
instructions. Performance is especially critical for the node structs since these are
used thousands of times when �tting a forests.
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B JuliaExtendableTrees in the project

In this section, we provide an overview of all the testing done with the JuliaExtendableTrees
library. We start by providing an overview of all the .jl �les used, and afterwards we
present some of the code used in the analyses of real data throughout the project.

B.1 Overview of test �les

File name Type Description

classification_nodedepth.jl C Varying maximum node depth on wine.
classification_nodesize.jl C Varying minimum node size on wine.
classification_sampling.jl C Varying fraction of data sampled on wine.
classification_splitter.jl C Varying splitting rule on iris. Not included.
regression_nfeatures.jl R Varying number of features on BostonHousing
regression_n_trees.jl R Varying number of trees on BostonHousing
rsf_testing.jl S Bootstrap estimates of the C-index for four datasets
peakVO2_tests.jl S Hyperparameter tuning on peakVO2.

Figure 22: Table of all .jl �les used for analysing data throughout the project. C:
Classi�cation, R: Regression, S: Survival.

B.2 Overview of �gure �les

File name Type Description

mlpre_figures.jl C/R All �gures for section 2.
rsf_figures.jl S All �gures related to rsf_testing.jl and peakVO2_tests.jl.

Figure 23: Table of all .jl �les used for making �gures using AlgebraOfGraphics
throughout the project. C: Classi�cation, R: Regression, S: Survival.

B.3 The regression and classi�cation analyses in Subsection 2.2

To analyse the e�ect of changing sfrac on the wine dataset, the following code
was run two times. One where the Gini coe�cient was chosen as splitting rule
(as in the code below) and one with the entropy splitting rule (simply replace
Gini_coefficient with Entropy everywhere).
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� �
include("JuliaExtendableTrees.jl")

Random.seed!(2024)

wine = CSV.read("wine.csv", DataFrame)
y = wine[:, :quality]
X = Matrix(wine[:, Not(:quality)])
oob_errors = Array{Float64}(undef, 10)
train_errors = Array{Float64}(undef, 10)

@time begin
for b in 1:9

wine_forest = grow_forest(X, y, "Classification", L_Gini_coefficient;
max_depth = 10, min_node_size = 10, sfrac = 0.1 + 0.1*(b - 1), swr = false)
oob_errors[b] = error_Classification(wine_forest, X, y, true)
train_errors[b] = error_Classification(wine_forest, X, y)
println(b)

end
# full bootstrap
wine_forest = grow_forest(X, y, "Classification", L_Gini_coefficient;
max_depth = 10, min_node_size = 10, sfrac = 1.0, swr = true)
oob_errors[10] = error_Classification(wine_forest, X, y, true)
train_errors[10] = error_Classification(wine_forest, X, y)

end

CSV.write("wine_sampling_Gini.csv", Tables.table(hcat(train_errors, oob_errors)),
writeheader = true)� �

To generate the corresponding �gure, the following code was used.

� �
using CSV, DataFrames, AlgebraOfGraphics, CairoMakie

df = (x = [0.1:0.1:1; 0.1:0.1:1; 0.1:0.1:1; 0.1:0.1:1],
y = [sampling_Gini.Training_error; sampling_Gini.OOB_error;
sampling_Entropy.Training_error; sampling_Entropy.OOB_error],
Error = [fill("Train", 10); fill("OOB", 10); fill("Train", 10);
fill("OOB", 10)], l = [fill("Gini coefficient", 20); fill("Entropy", 20)])

layers = visual(Lines) + visual(Scatter) * mapping(marker = :Error)
plt = data(df) * layers * mapping(:x, :y, color = :Error, layout = :l)
fg = draw(plt, axis = (xlabel = "Fraction of data used", xticks = 0.1:0.1:1,

ylabel = "Error rate"),
figure = (; size = (800, 400),
title = "Error rates for varying fractions of data
used to fit",
titlealign = :center))

save("Figures/sampling_plot.png", fg, px_per_unit = 3)� �
The following code was used to analyse the e�ect of varying the number of features
n_features on the BostonHousing dataset.
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� �
include("JuliaExtendableTrees.jl")

Random.seed!(2024)

BostonHousing = CSV.read("BostonHousing.csv", DataFrame)
y = BostonHousing[:, :medv]
X = Matrix(BostonHousing[:, Not(:medv)])
oob_errors = Array{Float64}(undef, 13)
train_errors = Array{Float64}(undef, 13)

@time begin
for b in 1:13

BostonHousing_forest = grow_forest(X, y, "Regression", L_squared_error;
max_depth = 5, min_node_size = 5, n_features = b, sfrac = 0.7, swr = false)
oob_errors[b] = error_Regression(BostonHousing_forest, X, y, true)
train_errors[b] = error_Regression(BostonHousing_forest, X, y)
println(b)

# clear memory before fitting the next forest
BostonHousing_forest = nothing

end
end

CSV.write("BostonHousing_nfeatures.csv",
Tables.table(hcat(1:13 ,train_errors, oob_errors)), writeheader = true)� �

To generate the corresponding �gure, the following code was used.

� �
nfeatures = CSV.read("BostonHousing_nfeatures.csv", DataFrame)
df = (; x = [nfeatures.n_features; nfeatures.n_features],

y = [nfeatures.Training_error; nfeatures.OOB_error],
Error = [fill("Train", 13); fill("OOB", 13)])

layers = visual(Lines) + visual(Scatter) * mapping(marker = :Error)
plt = data(df) * layers * mapping(:x, :y, color = :Error)
fg_nf = draw(plt, axis = (xlabel = "Number of features",

xticks = nfeatures.n_features,
ylabel = "Error rate"),
figure = (; size = (800, 400),
title = "Error rates for varying number of features
used in a split",
titlealign = :center))

save("Figures/n_features_plot.png", fg_nf, px_per_unit = 3)� �
B.4 The survival analyses in Subsection 5.7

The following code was used to test the e�ect of varying the minimum node size as
well as the splitting rule on the peakVO2 dataset.

� �
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include("JuliaExtendableTrees.jl")

# read in the data
df = CSV.read("peakVO2.csv", DataFrame)
y = Matrix(df[:, [:ttodead, :died]])
X = Matrix(df[:, Not([:ttodead, :died])])

Random.seed!(2024)

# min_node_sizes to check
sizes = [5, 10, 15, 20, 30, 40, 50]

# save errors and average number of terminal nodes
error_mns_lr = zeros(Float64, 7)
antn_mns_lr = zeros(Float64, 7)
error_mns_con = zeros(Float64, 7)
antn_mns_con = zeros(Float64, 7)
error_mns_lrs = zeros(Float64, 7)
antn_mns_lrs = zeros(Float64, 7)
error_mns_alr = zeros(Float64, 7)
antn_mns_alr = zeros(Float64, 7)
error_mns_C = zeros(Float64, 7)
antn_mns_C = zeros(Float64, 7)

@time begin
for i in 1:length(sizes)

# log-rank
forest = grow_forest(X, y, "Survival", L_log_rank;
min_node_size = sizes[i], n_trees = 1000, sfrac = 1.0, swr = true)
error_mns_lr[i] = OOB_error(forest)
antn_mns_lr[i] = forest.avr_number_terminal_nodes
forest = nothing # free memory

# conserve
forest = grow_forest(X, y, "Survival", L_conserve;
min_node_size = sizes[i], n_trees = 1000, sfrac = 1.0, swr = true)
error_mns_con[i] = OOB_error(forest)
antn_mns_con[i] = forest.avr_number_terminal_nodes
forest = nothing # free memory

# log-rank-score
forest = grow_forest(X, y, "Survival", L_log_rank_score;
min_node_size = sizes[i], n_trees = 1000, sfrac = 1.0, swr = true)
error_mns_lrs[i] = OOB_error(forest)
antn_mns_lrs[i] = forest.avr_number_terminal_nodes
forest = nothing # free memory

# approximate log-rank
forest = grow_forest(X, y, "Survival", L_approx_log_rank;
min_node_size = sizes[i], n_trees = 1000, sfrac = 1.0, swr = true)
error_mns_alr[i] = OOB_error(forest)
antn_mns_alr[i] = forest.avr_number_terminal_nodes
forest = nothing # free memory

# C-index
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forest = grow_forest(X, y, "Survival", L_C;
min_node_size = sizes[i], n_trees = 1000, sfrac = 1.0, swr = true)
error_mns_C[i] = OOB_error(forest)
antn_mns_C[i] = forest.avr_number_terminal_nodes
forest = nothing # free memory

println("Iteration: ", i, "/7")
end

end

# total time: 6489.334204 seconds (about 108 minutes)

CSV.write("peakVO2_min_node_size_error.csv",
Tables.table(hcat(sizes, error_mns_lr, error_mns_con, error_mns_lrs,
error_mns_alr, error_mns_C)), writeheader = true)

CSV.write("peakVO2_min_node_size_antn.csv",
Tables.table(hcat(sizes, antn_mns_lr, antn_mns_con, antn_mns_lrs,
antn_mns_alr, antn_mns_C)), writeheader = true)

# conclusion: log_rank_score with min_node_size = 20 is best� �
The other parts of the hyperparameter tuning was not as complicated. Below is the
code used to test the e�ect of the number of split points.

� �
Random.seed!(2024)

splits = [1, 2, 3, 4, 5, 10, 25, 50, 100]
error_split = zeros(Float64, 9)
antn_split = zeros(Float64, 9)

for i in 1:9
forest = grow_forest(X, y, "Survival", L_log_rank_score; min_node_size = 20,
n_trees = 1000, sfrac = 0.6, swr = false, n_split = splits[i])
error_split[i] = OOB_error(forest)
antn_split[i] = forest.avr_number_terminal_nodes
forest = nothing # free memory
println("Iteration: ", i)

end

CSV.write("peakVO2_split.csv",
Tables.table(hcat(splits, error_split, antn_split)), writeheader = true)

# best result is n_split = 1 (hmm, strange). n_split = 3 is also quite good� �
The code for varying the sampling scheme, the number of features and the num-
ber of trees is very similar and is thus omitted here. All tests may be found in
the peakVO2_tests.jl �le. The code for producing the �gures is very similar
to the classi�cation and regression case and is hence also omitted. See the �le
rsf_figures.jl.
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C More on the simulated data

C.1 Exploratory plots

We start by providing a few plots of the data as well as some basic statistics. When
we talk about lifetimes, we consider the total lifetimes, that is, the observed survival
time plus the age variable (denoted X5 above). For males, the average lifetime is
79.85 years, and the median is 82.12 years. For females, the corresponding statistics
are 83.63 and 85.96. A plot of the distribution of lifetimes for males and females are
below.

Figure 24: Histograms of lifetimes for males and females in the simulated data.

We see that it is a lot more likely for women to reach very high ages (100 years or
above) in this model. We also plot the lifetimes for two wage groups, those earning
less than 500.000 a year and those who earn above this �gure.

Figure 25: Histograms of lifetimes for two wage groups in the simulated data.

The di�erence in the two groups is not that large, since other covariates play a
more dominant role in determining the mortality. Nevertheless, some di�erence is
visible. A larger part of the high wage population lives longer. Finally, we plot the
distribution for the married and unmarried individuals.
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Figure 26: Histograms of lifetimes for married and unmarried individuals in the
simulated data.

Here the tendency is clear. Married individuals live longer than unmarried individ-
uals. In fact, the average lifetime for married individuals is 83.57, and the median is
86.19. For unmarried individuals, the corresponding statistics are 77.42 and 79.72.

C.2 The R code used for simulating the data

The following code de�nes the quantile function for the residual lifetime distribu-
tion Fx, when F is the Gompertz�Makeham distribution as well as the parameter
functions of the covariates.

� �
library(emdbook)

# quantile function for the Gompertz-Makeham distribution
Q <- function(u, b, g, r) {
g/(b * r) - 1/b * log(1 - u) - 1/r * lambertW(g/b * exp(g/b) * (1 - u)ˆ(-r/b))

}

# quantile function for the Gompertz-Makeham distribution (with starting age)
Q_x <- function(u, x, b, g, r) {
Q(1 - (1 - u)*S_GM(x, 0, b, g, r), b, g, r) - x

}

beta <- function(x) {
0.0004 + x * 0.0001

}

gamma <- function(x) {
0.000072 + x * 0.000006

}

rho <- function(x, y, z) {
0.0785 - x * 0.008 + 1000/y + z * 0.005

}� �
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With these functions in place, the data is simulated as follows.

� �
n <- 10ˆ4

set.seed(2024)
# sex, male = 1, female = 0
X1 <- rbinom(n, 1, 0.5)
# place of residence, 0 = city, 0.5 = suburbia, 0.8 = village, 1 = open lands
X2 <- sample(x = c(0, 0.5, 0.8, 1), size = n, replace = TRUE,
prob = c(5/12, 1/4, 1/6, 1/6))
# married, yes = 1, no = 0
X3 <- rbinom(n, 1, 0.7)
# annual wage
X4 <- round(runif(n, 2.5*10ˆ5, 7.5*10ˆ5))
# age at time 0
X5 <- rnorm(n, 25, sqrt(8))

# now simulate the data
U <- runif(n)
data <- tibble(Time = rep(0, n), Sex = X1, Residence = X2, Married = X3,
Annual_Wage = X4, Age = X5, Total_Age = rep(0, n))
for (i in 1:n) {
data[i, 1] <- Q_x(U[i], X5[i], beta(X1[i]), gamma(X2[i]), rho(X3[i], X4[i], X1[i]))
if (i %% 100 == 0) {

print(i)
}

}
data$Total_Age <- data$Time + data$Age
sum(is.na(data$Time)) # 210 NaN values
data <- na.omit(data) # just remove the NaN values

View(data)
write.csv(data, "sim_data.csv")� �
C.3 The R code used for analysing the data

In order to analyse the data, we start by importing the packages needed and adding
�censoring�. Since we impose no censoring, we simply add a vector of ones to the
dataframe.
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� �
library("randomForestSRC")
library(tidyverse)
library(survival)
library(eha)

# add the censoring indicators (a vector of ones in this case)
sim_data <- sim_data %>% mutate(Status = rep(1, nrow(sim_data)))� �

Predicting the cumulative hazard from a Poisson model is not implemented in the
eha package. Hence we need to do this manually3. In the following, t denotes a
vector of sorted unique event times, and fit_obj is an object of type pchreg from
the eha package.

� �
# compute the cumulative hazard function given constant hazards haz between
# the jump points cuts
cumulative_hazard <- function(haz, cuts) {
num_cuts <- length(cuts)
res <- rep(0, num_cuts)
if (num_cuts > 1) {

for (i in 2:num_cuts) {
res[i] <- res[i - 1] + (cuts[i] - cuts[i - 1]) * haz[i - 1]

}
}
res

}

# compute the predicted chf from an object of type pchreg for a single covariate
# vector x
pred_pcph_onedim <- function(fit_obj, x, t, cum_haz) {
haz <- as.numeric(fit_obj$hazards)
cuts <- as.numeric(fit_obj$cuts)
coef <- as.numeric(fit_obj$coefficients)

N <- length(t)
res <- rep(0, N)

for (i in 1:N) {
# find the interval for the event time
start <- 2
baseline = 0
for (j in start:length(cuts)) {

if (t[i] <= cuts[j]) {
# compute the baseline hazard in the point t[i]
baseline <- cum_haz[j - 1] + (t[i] - cuts[j - 1]) * haz[j - 1]

# the next event time is larger, so start next i iteration in current j
start <- j
break

}

3To do this properly, one should vectorize the pred_pcph_onedim function instead of de�ning
pred_pcph as done here.

130



}
res[i] <- baseline * exp(t(coef) %*% x)
print(res[i])

}
res

}

# compute the predicted chf from an object of type pchreg for a matrix of
# covariates X
pred_pcph <- function(fit_obj, X, t) {
n <- nrow(X)
N <- length(t)
res <- matrix(, nrow = n, ncol = N)
cum_haz <- cumulative_hazard(fit_obj$hazards, fit_obj$cuts)

for (i in 1:n) {
res[i, ] <- pred_pcph_onedim(fit_obj, as.numeric(X[i, ]), t, cum_haz)

}

return(res)
}� �

It was also necessary to implement a function for computing the C-index in R. This
was done the same way as in Julia and we hence omit the code here. With all these
functions in place, the analysis is run using the following code.

� �
B <- 100
n <- nrow(sim_data)
error_RSF <- error_Cox <- error_Poisson <- rep(0, B)
#set.seed(2024)

start.time <- Sys.time()
for (b in 1:B) {
# generate a bootstrap sample
bootstrap_sample <- sim_data[sample(1:n, n, replace = TRUE), ]

# fit the RSF and save the error
rf <- rfsrc(Surv(Time, Status) ~ ., bootstrap_sample,

ntree = 500, save.memory = TRUE,
splitrule = "logrankscore", nodesize = 5)

error_RSF[b] <- last(rf$err.rate)

# fit the Cox PH model and save the error
error_Cox[b] <- 1 - concordance(coxph(Surv(Time, Status) ~ .,
bootstrap_sample), newdata = bootstrap_sample)$concordance

# fit the Poisson regression model
fit <- pchreg(Surv(Time, Status) ~ ., data = bootstrap_sample,
cuts = c(0, 5, 20, 40, 60, 70, 80, 85, 90, 100))
# compute predictions for the Poisson regression model. rf$xvar are the features
# from the data, and rf$time.interest are the event times used in the RSF model
predictions_pcph <- pred_pcph(fit, rf$xvar, rf$time.interest)
# save the error
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error_Poisson[b] <- 1 - C_index(rowSums(predictions_pcph),
bootstrap_sample$Time, bootstrap_sample$Status)

# count iteration and print results
print("Iteration:")
print(b)

results <- tibble(RSF = error_RSF, Cox = error_Cox, Poisson = error_Poisson)
write.csv(results, file = "sim_results.csv", row.names = FALSE)

}
end.time <- Sys.time()
end.time - start.time� �

On my laptop, the above code took a little under nine hours to run in total. I
was even forced to split up the computations in two chunks with the �rst chunk
containing the �rst 90 iterations. A .csv �le is saved for every iteration to make
sure no results were lost. Using this �le with the errors, the box plot from the RSF
section was made with the following code.

� �
sim_results <- tibble(read.csv("sim_results.csv"))

sim_results_plot <- tibble(Error = c(sim_results$RSF, sim_results$Cox,
sim_results$Poisson),

Model = c(rep("RSF", 100), rep("Cox", 100),
rep("Poisson", 100)))

# boxplot of the above analysis
box <- ggplot(data = sim_results_plot, mapping = aes(Model, Error)) +
geom_boxplot(colour = "black")

ggsave("sim_box.png", box)� �
In order to compute and plot the eight Nelson�Aalen estimators, we start by �tting
the models and de�ning the di�erent features.

� �
# fit models
rf <- rfsrc(Surv(Time, Status) ~ ., sim_data, ntree = 500, save.memory = TRUE,

splitrule = "logrankscore", nodesize = 5)
cox <- coxph(Surv(Time, Status) ~ ., sim_data)
pcph <- pchreg(Surv(Time, Status) ~ ., data = sim_data,

cuts = c(0, 5, 20, 40, 60, 70, 80, 85, 90, 100))

event_times <- rf$time.interest

# choose eight different combinations of features
feature1 <- filter(rf$xvar, Residence == 1, Sex == 1,

Married == 1, Annual_Wage <= 310000)[3,]
feature2 <- filter(rf$xvar, Residence == 1, Sex == 1,

Married == 1, Annual_Wage >= 600000)[20,]
feature3 <- filter(rf$xvar, Residence == 1, Sex == 1,
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Married == 0, Annual_Wage <= 310000)[1,]
feature4 <- filter(rf$xvar, Residence == 1, Sex == 1,

Married == 0, Annual_Wage >= 590000)[57,]
feature5 <- filter(rf$xvar, Residence == 1, Sex == 0,

Married == 1, Annual_Wage <= 310000)[6,]
feature6 <- filter(rf$xvar, Residence == 1, Sex == 0,

Married == 1, Annual_Wage >= 590000)[10, ]
feature7 <- filter(rf$xvar, Residence == 1, Sex == 0,

Married == 0, Annual_Wage <= 310000)[2, ]
feature8 <- filter(rf$xvar, Residence == 1, Sex == 0,

Married == 0, Annual_Wage >= 600000)[18, ]� �
We now make the eight plots manually by changing the value of feature below
and the name of plot. The combined plot is then made using ggarrange from
the ggpubr package, Kassambara [41].

� �
# change feature
feature <- feature8

# predict for the RSF model
pred_rf <- predict.rfsrc(rf, feature)
data_rf <- tibble(time = event_times, hazard = as.numeric(pred_rf$chf))

# predict for the CoxPH model
pred_cox <- tibble(basehaz(fit = cox))
pred_cox[, 1] <- pred_cox[, 1] *
exp(t(as.numeric(cox$coefficients)) %*% as.numeric(feature))

# predict for the Poisson model
data_pcph <- tibble(time = event_times,
hazard = as.numeric(pred_pcph(pcph, feature, event_times)))

# the true cumulative hazard curve
mu <- function(t, x) {
beta(x[1]) + gamma(x[2]) * exp(rho(x[3], x[4], x[1]) * (t + x[5]))

}

# this needs to be done for plot1, plot2, ..., plot8
plot8 <- ggplot() +
geom_step(data = pred_cox, mapping = aes(x = time, y = hazard),

color = "blue") +
geom_step(data = data_pcph, mapping = aes(x = time, y = hazard),

color = "darkgreen") +
geom_step(data = data_rf, mapping = aes(x = time, y = hazard),

color = "red") +
geom_function(fun = mu, args = list(x = as.numeric(feature)),

color = "purple") +
xlab("Time (years)") + ylab("Cumulative hazard") + ylim(0, 20)

ggarrange(plot1, plot2, plot3, plot4, plot5, plot6, plot7, plot8,
nrow = 4, ncol = 2)� �
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D More on conditional independence and Markov pro-

cesses

In this �nal section of the appendix, we brie�y go through the setup of conditional
independence and Markov processes as presented in Hansen [24]. The exposition
highlights the strengths of applying a purely measure-theoretical approach to Markov
processes and is therefore worth presenting. Fix a probability space (Ω,F ,P). All
collections of events (subsets) are implicitly assumed to be contained in F .

De�nition D.1. Let A and B be two collections of events. A and B are conditionally
independent given a sigma-algebra H if

P(A ∩B | H) = P(A | H)P(B | H) a.s. for all A ∈ A, B ∈ B.

For the sake of brevity, we will from now on simply say that A and B are independent
given H. The following result is more or less immediate.

Lemma D.2. Let A and B be collections of events.

(i) If H is trivial, in the sense that P(H) ∈ {0, 1} for all H ∈ H, then A ⊥⊥ B | H
if and only if A ⊥⊥ B.

(ii) If A and B are ∩-stable, then

A ⊥⊥ B | H ⇒ σ(A) ⊥⊥ σ(B) | H.

(iii) If C ⊆ A, then A ⊥⊥ B | H implies that C ⊥⊥ B | H.

(iv) Assume A and B are sigma-algebras with A ⊥⊥ B | H. Then it holds for any
bounded real-valued random variables X and Y with X A-measurable and Y
B-measurable that

E[XY | H] = E[X | H]E[Y | H].

Proof. (i) follows immediately from the fact that P(A | H) = P(A) for every A ∈ A
under the assumption on H. As for (ii), let A ∈ A and de�ne

GA = {B ∈ σ(B) : P(A ∩B | H) = P(A | H)P(B | H)}.

Since
GA = σ(B) ∩ {B ∈ F : P(A ∩B | H) = P(A | H)P(B | H)}

is an intersection of two Dynkin systems, GA is itself a Dynkin system. By as-
sumption, B ⊆ GA, and by construction, GA ⊆ σ(B), so the stability under �nite
intersections of B gives by Dynkin's lemma that GA = σ(B). As this holds for every
A, we have A ⊥⊥ σ(B) | H. Now repeat the argument to obtain σ(A) ⊥⊥ σ(B) | H.
(iii) is a trivial observation. (iv) follows by usual measure-theoretical arguments.
By assumption, the claim is true for indicator functions, and linearity of expecta-
tions extends the result to simple functions. Now approximate X and Y by simple
functions and apply proper limit theorems. �
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The following result provides a useful reformulation of the concept of conditional
independence which is particularly nice for certain computations. It states that
A ⊥⊥ B | H means that the information in B tells us nothing about the behaviour of
A-measurable variables if the information in H is already provided.

Proposition D.3. Let A and B be sigma-algebras. We have A ⊥⊥ B | H if and only
if

P(A | B ∨ H) = P(A | H) a.s. for every A ∈ A

where B ∨H = σ(B ∪H).

Proof. First note that for any A ∈ A, B ∈ B and H ∈ H, we have that∫
B∩H

P(A | H)dP =

∫
H
1BP(A | H)dP =

∫
H
E[1BP(A | H) | H]dP

=

∫
H
P(A | H)P(B | H)dP.

Suppose A ⊥⊥ B | H. In this case, we can continue the computation and obtain∫
B∩H

P(A | H)dP =

∫
H
P(A ∩B | H)dP = P(A ∩B ∩H) =

∫
B∩H

1AdP.

Sets of the form B ∩ H form a ∩-stable generator for B ∨ H. Hence we see that
P(A | H) satis�es all assumptions necessary to be a conditional expectation of 1A
given B ∨ H, that is, P(A | H) = P(A | B ∨ H) a.s. Conversely, suppose P(A |
B ∨ H) = P(A | H) a.s. for every A ∈ A. We can use the relation above to see that∫

H
P(A | H)P(B | H)dP =

∫
B∩H

P(A | B ∨ H)dP =

∫
B∩H

1AdP =

∫
H
1A∩BdP.

Hence P(A | H)P(B | H) satis�es all requirements of being the conditional expecta-
tion of 1A∩B given H, and the statement is proved. �

Using standard techniques, it immediately follows that for any boundedA-measurable
variable X, it holds that

A ⊥⊥ B | H ⇒ E[X | B ∨ H] = E[X | H] a.s.

The following results are essential tools in strengthening the Markov property.

Proposition D.4. Let A and B be sigma-algebras. Then

A ⊥⊥ B | H ⇒ A ⊥⊥ (B ∨H) | H.

Proof. Suppose A ⊥⊥ B | H and let A ∈ A, B ∈ B and H ∈ H. Then

P(A ∩B ∩H | H) = 1HP(A ∩B | H) = 1HP(A | H)P(B | H)

= P(A | H)P(B ∩H | H),

and since events of the form B ∩H is a ∩-stable generator of B ∨H, the result now
follows from part (ii) of the lemma above. �
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Proposition D.5. Let A and B be sigma-algebras. Then

A ⊥⊥ B | H and H ⊆ G ⊆ B ∨H ⇒ A ⊥⊥ B | G.

Proof. Let A ∈ A. Using the extended tower property as well as Proposition D.3,
we compute

P(A | B ∨ G) = E[P(A | B ∨ G ∨ H) | B ∨ G] = E[P(A | B ∨ H) | B ∨ G]

= E[P(A | H) | B ∨ G] = P(A | H) a.s.

By the same argument,

P(A | G) = E[P(A | B ∨ H) | G] = E[P(A | H) | G] = P(A | H).

Combining these two calculations, we have P(A | B ∨ G) = P(A | G) a.s. for every
A ∈ A which by Proposition D.3 implies that A ⊥⊥ B | G as desired. �

Proposition D.6. Let A,B and G be sigma-algebras. Then

A ⊥⊥ B | H and A ⊥⊥ G | B ∨ H ⇒ A ⊥⊥ (B ∨ G) | H.

Proof. Follows immediately from Proposition D.3 and the calculation

P(A | B ∨ G ∨ H) = P(A | B ∨ H) = P(A | H) a.s.

for every A ∈ A. �

We can now prove the desired strengthening of the Markov property.

Proof of Theorem 6.10. We aim to show that

σ(Zu : u ≥ t) ⊥⊥ FZs | Zs for s < t.

The collection ⋃
I⊆[t,∞)
#I<∞

σ(Zu : u ∈ I)

is a ∩-stable generator of σ(Zu : u ≥ t). Hence it su�ces to show that for every
s < t1 < · · · < tn, we have

(Zt1 , ..., Ztn) ⊥⊥ FZs | Zs.

We prove this statement using induction on n, the case n = 1 being simply the
de�nition of the Markov property. Now assume the statement is proven for some n.
Consider s < t1 < · · · < tn < tn+1. We know that

Ztn+1 ⊥⊥ FZtn | Ztn .

Since σ(Ztn) ⊆ σ(Zs, Zt1 , ..., Ztn) ⊆ FZtn , it follows from Proposition D.5 that

Ztn+1 ⊥⊥ FZtn | (Zs, Zt1 , ..., Ztn)

136



which implies
Ztn+1 ⊥⊥ FZs | (Zs, Zt1 , ..., Ztn).

By the induction hypothesis, we have

(Zt1 , ..., Ztn) ⊥⊥ FZs | Zs.

Now apply Proposition D.6 with A = FZs ,H = σ(Zs),B = (Zt1 , ..., Ztn) and G =
σ(Ztn+1) to obtain

(Zt1 , ..., Ztn+1) ⊥⊥ FZs | Zs
which �nishes the induction step and thus the proof of the theorem. �
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