
Stochastic Processes in Non-Life Insurance (SkadeStok)
2023/2024

Lecture notes

Rasmus Frigaard Lemvig (rfl@math.ku.dk)

November 2023



Introduction

These lecture notes were written for the course Stochastic Processes in Non-Life Insurance
(abbreviated SkadeStok) at the University of Copenhagen in the fall of 2023 and are based
on the lectures given by Jeffrey F. Collamore. I have strived to keep the notes as faith-
ful as possible to the lectures but I have made minor changes that I felt would improve
the overall readability and presentation. These changes include presenting new notions as
definitions and important remarks as results such as propositions and lemmata whenever
possible. Thus the notes are written more in the style of a book. I have also added certain
proofs that helped me absorb the different notions, but proofs belonging to results from
other areas are usually omitted. Occasionally, an example not presented in the lecture has
been added.

I want to stress that these notes are not meant as a replacement for the lectures but as a
supplement. The notes can be used to prepare for the lectures or to revisit specific concepts
and explanations (which is why I added an index) but they cannot provide the same intu-
ition as the (physical) lectures. This intuition is also an indispensable tool for solving the
exercises and developing problem solving skills (which is a key point of the course).

Lastly, I want to thank Rasmus Benn, Anders Lund Mortensen and Bastian Møller Peit-
ersen for pointing out some typos. There are likely still typos remaining and maybe a few
mathematical errors. These are all due to me. If the reader spots any of these mistakes,
they are more than welcome to contact me.

Rasmus Frigaard Lemvig
November 2023
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Week 1 - Basic notions

1 The Cramér-Lundberg model

We start by giving a brief overview of the Cramér-Lundberg model. The model was first
introduced informally in the doctoral thesis of Filip Lundberg in 1903. The model was
republished in the 1930s by Harald Cramér, this time with a more rigorous mathematical
foundation. The model is specified by two payment streams:

� Premiums from policyholders: The premiums from the policyholders are assumed
to be constant over time. We denote the income at time t by It = ct for some constant
c > 0.

� Claims losses: Claims losses occur at random times. The idea of the model is that
the probability of a claim happening in a small (infinitesimal) interval [t, t + ∆t] is
approximately proportional to a positive constant λ times the length of the interval
and only a single claim occurs at a given time. Somewhat informally,

P (claim in [t, t+ ∆t]) = ∆t · λ+ o(∆t)

P (more than one claim in [t, t+ ∆t]) = o(∆t).

Furthermore, these probabilities should not depend on t. Let Nt denote the number
of claims in the interval [0, t]. We shall soon see that the above probabilities imply
that the stochastic process {Nt} is a Poisson process. Let {Yi} denote the claim
sizes (a discrete stochastic process of a.s. positive random variables). The stream of
accumulated losses {Lt} in [0, t] is given by

Lt =

Nt∑
i=1

Yi.

We assume that {Yi} is an iid sequence.

From these two payment streams, we can formulate the fundamental object of study in this
lecture, namely the total capital process {Ct} given by

Ct = u+ ct−
Nt∑
i=1

Yi

where u > 0 is a constant called the initial capital.
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We end this section by addressing some criticisms of the model. First of all, the model
assumes homogeneous behaviour of the policy-holders. In reality, there are many different
types of policy-holders for a company and they pay different premiums for different products,
and the claims will have quite different distributions. It also assumes that the number of
policy-holders is fixed, but in the real world, policy-holders tend to change company from
time to time. There is also the obvious issue of the growth of the capital. If everything
goes well (larger cash flows from premiums than from claims), the model dictates that the
capital will grow indefinitely. Most real shareholders would prefer that a part of the surplus
was paid out as dividends. Last but not least, there is the problem of seasonality. The
number of claims in the model is assumed to not depend on time but only on a timespan. In
reality, many claims happen more often in certain months of the year. Furthermore, some
claims may increase in frequency over time. An example could be flooding or other extreme
wheather phenomena. Nevertheless, the model strikes a good balance between mathematical
tractability and usefulness.

2 The ruin problem

Ruin occurs if the accumulated losses surpass the initial capital plus the accumulated pre-
miums. We are interested in the ruin probability in the long run, and therefore we let ψ(u)
denote the probability that ruin occurs at some point as a function of the initial capital u.
Formally,

ψ(u) = P (Ct < 0 for some t ≥ 0) = P

(
inf
t≥0

Ct < 0

)
.

Letting Xt = It − Lt, we can also write this probability as

ψ(u) = P (Xt < −u for some t ≥ 0).

In an applied context, we want to find an initial capital u so large that ψ(u) ≤ β for some
fixed threshold β ∈ (0, 1).

3 Stochastic processes

In this section we will introduce the basic concepts of stochastic processes that will be needed
in the course.

Definition 3.1. Let (Ω,F , P ) denote a probability space i.e. Ω is a set called the sample
space, F is a σ-algebra and P is a probability measure. A stochastic process {Xt} is a map

X : Ω× [0,∞)→ R

where we will usually write Xt(ω) := X(ω, t). For a given outcome ω ∈ Ω, we call the
function t 7→ X(ω, t) the sample path associated with ω.

In the rest of the section, we implicitly assume that a probability space (Ω,F , P ) is given.
Often it is necessary to assume some continuity properties of the stochastic processes we
work with. An especially important assumption is the property of being càdlàg.
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Definition 3.2. A stochastic process {Xt} is called càdlàg (French for continue à droite,
limite à gauche) if the sample paths are right continuous and have left limits. In other
words, for all t,

lim
s↓t

Xs = Xt

and

lim
s↑t

Xs

exists.

We also need to model a flow of information in time. This is done via the mathematical
concept of a filtration.

Definition 3.3. A filtration {Ft} is a sequence of σ-algebras such that Ft ⊆ F for all t and
such that Fs ⊆ Ft for all s ≤ t.

In this course we have the convention F0 = {∅,Ω} i.e. F0 is the trivial σ-algebra. Intuitively
this means that we have no information available at time zero. It is necessary to have some
measurability conditions on our stochastic processes. If the value of a stochastic process is
known at time t, we call such a process adapted.

Definition 3.4.

(i) A stochastic process {Xt} is called {Ft}-adapted if Xt is Ft-measurable for all t. We
will often omit {Ft} and simply say that {Xt} is adapted.

(ii) For a given stochastic process {Xt}, we call the filtration given by FXt = σ(Xs : s ≤ t)
the filtration generated by the process {Xt}. This is the smallest filtration such that
{Xt} is adapted.

A particularly important subclass of stochastic processes in this course is the following.

Definition 3.5. A stochastic process {Xt} is called a Lévy process if

(i) X0 = 0.

(ii) {Xt} has independent increments. That is, for every finite partition 0 < t1 < t2 <
· · · < tk, the variables {Xti+1

−Xti}k−1
i=1 are independent.

(iii) {Xt} is a stationary sequence. For every s ≤ t, Xt − Xs
d
= Xt−s where

d
= denotes

equality in distribution.

Let us finally have a look at two important examples of stochastic processes (that are also
both Lévy processes).

Example 3.6. A stochastic process {Wt} is called a standard Brownian motion if

(i) W0 = 0,

(ii) {Wt} has independent increments and

(iii) Wt −Ws ∼ N (0, t− s).
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In other words, a standard Brownian motion is a Lévy process with an increment over [s, t]
being normal distributed with mean zero and variance t− s. We write {Wt} ∼ BM(0, 1) for
a standard Brownian motion.

A stochastic process {Wt} is called a general Brownian motion BM(m, η2) if{
Wt −mt
η
√
t

}
∼ BM(0, 1).

Example 3.7. A stochastic process {Nt} is called a Poisson process with intensity λ > 0
if Nt takes values in N0 = {0, 1, 2, ...} and

(i) P (Nh ≥ 1) = λh+ o(h),

(ii) P (Nh ≥ 2) = o(h) and

(iii) {Nt} has stationary and independent increments.

All limits are understood in the sense that h→ 0. The concept of a Poisson process can be
extended to that of a compound Poisson process . This is a process of the form

Vt =

Nt∑
i=1

Yi

with {Nt} a Poisson process and {Yi} iid and independent of {Nt}.

Remark 3.8. Lévy processes seem like a very broad class of stochastic processes but it turns
out that every Lévy process {Xt} can be decomposed into a sum of the form

Xt = ct+ σWt + Jt

with c a constant, Wt a standard Brownian motion and Jt a jump process. The interested
reader can look up Lévy-Itô decomposition.

Another interesting type of process is a point process.

Definition 3.9. A stochastic process {Nt} taking values in N0 is called a point process if
N0 = 0 and Nt ≥ Ns for t ≥ s.

We end this lecture by establishing a useful property of Poisson processes.

Proposition 3.10. Let {N1
t } and {N2

t } be independent Poisson processes with intensities
λ1 and λ2, respectively. Then {N1

t +N2
t } is a Poisson process with intensity λ1 + λ2.

Proof. {N1
t +N2

t } clearly takes non-negative integer values. Using independence, we have

P (N1
h +N2

h ≥ 1) = 1− P (N1
h = 0, N2

h = 0) = 1− P (N1
h = 0)P (N2

h = 0)

= 1− (1− λ1h+ o(h))(1− λ2h+ o(h))

= 1− (1− λ2h− λ1h+ λ1λ2h
2 + o(h))

= λ1h+ λ2h+ o(h) = (λ1 + λ2)h+ o(h).
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Consider now the event that N1
h +N2

h ≥ 2. If this is the case, then either N1
h ≥ 2, N2

h ≥ 2
or N1

h , N
2
h ≥ 1. Hence

P (N1
h +N2

h ≥ 2) ≤ P (N1
h ≥ 2) + P (N2

h ≥ 2) + P (N1
h ≥ 1, N2

h ≥ 1)

= o(h) + o(h) + P (N1
h ≥ 1)P (N2

h ≥ 1)

= o(h) + (λ1h+ o(h))(λ2h+ o(h))

= o(h) + (λ1λ2h
2 + o(h)) = o(h).

This completes the proof.
�

A Poisson process can be identified with its arrival times

Tk = inf{t ≥ 0 : Nt = k}

i.e. the time that the process jumps from k − 1 to k. Note that T0 = 0. Given the arrival
times, we have

Nt =

∞∑
i=0

1{Tn≤t}

which establishes the one-to-one correspondence between a Poisson process and its arrival
times. In describing a Poisson process, the interarrival times τi = Ti − Ti−1 for i = 1, 2, ...
are particularly important. There are many equivalent formulations of the definition of a
Poisson process. Some of them are given in the following proposition.

Proposition 3.11. The following are equivalent:

(i) {Nt} is a Poisson process with intensity λ > 0.

(ii) {Nt} is a point process with independent interarrival times {τi} with τi ∼ Exp(λ).

(iii) {Nt} has independent and stationary increments and Nt ∼ Poisson(λt) for all t ≥ 0.

Proof. See Proposition 1.10 on page 3 in [6] or Theorem 5.3 on page 18 in [2]. �

4 Martingales and optional sampling

In this section we go through the martingale machinery necessary for our purposes. We
assume that we are given a probability space (Ω,F , P ).

Definition 4.1. A stochastic process {Mt} is a martingale (relative to the filtation {Ft})
if

(i) {Mt} is {Ft}-adapted.

(ii) E[|Mt|] <∞ for all t ≥ 0.

(iii) E[Mt+s | Ft] = Mt a.s. for all s, t ≥ 0.

Example 4.2. If {Nt} is a Poisson process with intensity λ > 0, {Nt−λt} is a martingale.
The verification of this is left as an exercise.
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Example 4.3. A standard Brownian motion is a martingale. Again the reader can verify
this.

A useful concept in many situations is the notion of a stopping time.

Definition 4.4. A random variable τ : Ω → [0,∞) is called a stopping time with respect
to a filtration {Ft} if

{τ ≤ t} ∈ Ft ∀t ≥ 0.

One should intuitively think of a stopping time τ as the time of an event where we know
whether this event has occured given the information available at time t.

Example 4.5. Let {Wt} ∼ BM(0, 1) and τ = inf{t ≥ 0 : |Wt| ≥ a} for some a ≥ 0. τ is
the first time that {Wt} leaves the region [−a, a]. This is a stopping time since we know
whether |Wt| ≥ a at time t (assuming that Wt is adapted).

A non-example of a stopping time could be: τ indicates the last time a standard Brownian
motion surpasses 1. We can only determine τ if we know the entire future behaviour of the
process and hence τ is not a stopping time. Before we can state the next essential result,
we need to define the information available at a stopping time.

Definition 4.6. For a stopping time τ , define the σ-algebra

Fτ = {A ∈ F | A ∩ {τ ≤ t} ∈ Ft ∀t ≥ 0}.

We leave it as an exercise for the reader to verify that Fτ is indeed a σ-algebra. The
intuition behind Fτ is that it contains all the information available at time τ . Note that if
τ is constant and equal to t, then Fτ = Ft. We can now state an essential tool from the
theory of martingales, suitably formulated for our purposes.

Theorem 4.7 (Optional sampling theorem). Assume {Mt} is a martingale and let τ1
and τ2 be stopping times. Then

E[Mt∧τ2 | Fτ1 ] = Mt∧τ1∧τ2 a.s.

with ∧ denoting ”minimum” i.e. t ∧ s := min{t, s}.

Proof. See for example Theorem 1.2.6 in [7] or [4]. �

For our purposes, a special case of the above theorem will often suffice.

Corollary 4.8. Let {Mt} be a martingale and τ a stopping time. Then

E[Mt∧τ | F0] = M0.

If τ is also a.s. bounded, we have

E[Mτ | F0] = M0.

We now consider an example of how the technique of optional sampling can be applied.
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Example 4.9. Consider a Poisson process {Nt} with intensity λ. Let a ∈ N and τ = inf{t ≥
0 : Nt ≥ a} denote the first time Nt reaches a. Our goal is to compute E[τ ]. We know that
Mt = Nt − λt is a martingale. Using optional sampling, we have E[Mt∧τ | F0] = M0. We
have E[Mt∧τ ] = M0 = 0 by our convention that F0 = {∅,Ω}. We thus have

E[Nt∧τ ] = λE[t ∧ τ ].

Let us rewrite the left hand side as follows

E[Nt∧τ ] = E[Nt∧τ1{t≥τ}]+E[Nt∧τ1{t<τ}] = E[Nτ1{t≥τ}]+E[Nt1{t<τ}] = aE[1{t≥τ}]+E[Nt1{t<τ}]

and so
aE[1{t≥τ}] + E[Nt1{t<τ}] = λE[t ∧ τ ].

Let us consider the limit t→∞ for each term. By dominated convergence,

E[1{t≥τ}]→ E[1{τ<∞}] = P (τ <∞) = 1

since Nt → ∞ a.s. (use the strong law of large numbers on Nt/t). Nt → ∞ also implies
that 1{t<τ} → 0 so using dominated convergence,

E[Nt1{t<τ}] = E[Nt∧τ1{t<τ}]→ 0.

Lastly, monotone convergence yields

E[t ∧ τ ]→ E[τ ].

Combining all these limits, we get

a+ 0 = λE[τ ]

and we conclude that E[τ ] = a/λ. This result also makes sense intuitively. A larger intensity
means that the process is more likely to reach a early, and a larger a should take longer
time to reach.

We end this section by stating and proving a theorem which tells us how to construct
martingales using Lévy processes. First we need a short definition.

Definition 4.10. For a random variable X, the function

κX(α) = E[eαX ]

is called the moment-generating function of X (when it exists in a neighbourhood around
zero). When the moment-generating function exists, the function

Λ(α) = log κX(α) = log E[eαX ]

is called the cumulant-generating function of X.

The following lemma is purely technical and is used to construct two important examples
of martingales.

Lemma 4.11. If a real function f satisfies the Cauchy functional equation f(x + y) =
f(x) + f(y), then f restricted to Q is a linear function i.e. f(q) = cq for some constant c
for all q. If f is continuous, then f is a linear function (on its entire domain).
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Proof. Left as an exercise for the reader. �

Theorem 4.12. Assume {Xt} is a Lévy process with respect to the natural filtration and
E[|Xt|] <∞ for all t ≥ 0. Then:

(i) {Xt − µt} with µ = E[X1] is a martingale.

(ii) If κX(α) exists, eαXt−tΛ(α) is a martingale where Λ denotes the cumulant-generating
function of X1, Λ(α) = log E[eαX1 ].

Proof. (i) is left as an exercise for the reader. To prove (ii), we first claim that

E[eαXt ] = etΛ(α).

Define f(t) = E[eαXt ]. The Lévy process property gives

f(t+ s) = E[eα(Xt+Xs)] = E[eαXt ]E[eα(Xt+s−Xt)]

= E[eαXt ]E[eαXs ] = f(t)f(s).

Hence log f(t+ s) = log f(t) + log f(s) and so log f(t) satisfies the Cauchy functional equa-
tion. Recall that the moment-generating function is continuous and hence log f(t) = ct for
some constant c by the above lemma. To identify c, simply note that f(1) = ec so that
c = log f(1) = log E[ecX1 ] = Λ(α). Now let Mt = eαXt−tΛ(α). The rest of the proof consists
of the following calculation:

E[Mt+s | Ft] = E[eαXt+s−(t+s)Λ(α) | Ft] = e−(t+s)Λ(α)E[eαXt+s | Ft]
= e−(t+s)Λ(α)E[eα(Xt+s−Xt)eαXt | Ft]
= e−(t+s)Λ(α)eαXtE[eα(Xt+s−Xt)] = e−(t+s)Λ(α)eαXtE[eαXs ]

=−(t+s)Λ(α) eαXtesΛ(α) = eαXt−tΛ(α) = Mt.

In the third equality we used the fact that a Lévy process has independent increments. �

The martingale in (ii) is important to remember. It will be used frequently throughout the
course.

5 The net profit condition

We end this lecture by again considering the Cramér-Lundberg process,

Ct = u+ ct−
Nt∑
i=1

Yi, Xt = ct−
Nt∑
i=1

Yi.

{Xt} is a Lévy process (see the exercises). By the previous theorem, Mt = Xt − µt for
µ = E[X1] is a martingale. A natural question to ask is when the ruin probability ψ(u) is
strictly less than one. Using the strong law of large numbers, it follows that ψ(u) = 1 when
µ < 0. A difficult case is when µ = 0. One can show that in this case, Ct will cross zero
infinitely often almost surely. Hence ruin is also inevitable in this case. We conclude that
the ruin problem is only non-trivial for µ > 0. We have

0 < µ = c−E[N1]E[Y1] = c− λµY
where µY = E[Y1]. It follows that µ > 0 if and only if c > λµY . This equality is called
the net profit condition or simply NPC . This has a natural interpretation. Indeed, NPC
simply says that the premium rate exceeds the rate of claims losses.



Week 2 - The Lundberg inequality and
renewal theory

6 The Lundberg/adjustment coefficient

Consider the Cramér-Lundberg model

Ct = u+ ct−
Nt∑
i=1

Yi, Xt = ct−
Nt∑
i=1

Yi.

From the previous lecture, we know that the following are martingales

M̃t = Xt − µt, µ = E[X1] = c− λµY > 0 (by NPC)

Mt = eαXt−tΛ(α), Λ(α) = log E[eαX1 ]

where α ∈ R and µY = E[Y1]. {Mt} is called the exponential martingale or the Wald
martingale. Later in this lecture we will use this martingale to establish the Lundberg
inequality. First we do some computations. Define

κ(α) := E[eαX1 ] = E

[
e
α
(
c−
∑N1
i=1 Yi

)]
.

To compute this mean, we use the tower property of conditional expectations. Note that
for deterministic n,

E
[
e−α

∑n
i=1 Yi

]
= E[e−αY1−···−αYn ] = E[e−αY1 ] · · ·E[e−αYn ] = E[e−αY1 ]n,

where we have used that {Yi} is an iid sequence. Letting κY (α) = E[eαY1 ], we get

κ(α) = eαcE
[
E
[
e−α

∑N1
i=1 Yi | N1

]]
= eαcE

[
E[e−αY1 ]N1

]
= eαcE[κY (−α)N1 ].

As N1 is Poisson distributed with rate λ > 0, we have

κ(α) = eαc
∞∑
n=0

κY (−α)nP (N1 = n) = eαc
∞∑
n=0

κY (−α)n
λn

n!
e−λ

= eαc−λ
∞∑
n=0

(κY (−α)λ)n

n!
= eαc−λeκY (−α)λ = eαc+λ(κY (−α)−1).

9
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It follows that the cumulant-generating function is

Λ(α) = αc+ λ(κY (−α)− 1).

It is of interest to study the behaviour of Λ. We note that Λ(0) = 0 and that

Λ′(α) = c− λκ′Y (−α)

so Λ′(0) = c − λκ′Y (0) = c − λµY > 0 by NPC. Hence the graph of Λ goes through and is
increasing at the origin. In general, one can show that Λ is a convex continuous function
on the interior of its domain (given that it exists in a neighbourhood of zero), see the
supplementary part at the end. Also, since P (X1 < 0) > 0, Λ(α) → ∞ as α → −∞.
From these facts we may conclude that if Λ(α) is finite for all α ≤ 0 or continuous on its
entire domain, Λ(−R) = 0 for some R > 0. This R is unique and is called the adjustment
coefficient .

7 The Lundberg inequality

From the above considerations, Mt = e−RXt is a martingale. Let T = inf{t ≥ 0 : Xt < −u}
denote the time of ruin. This is a stopping time. Recall that we have F0 = {∅,Ω} by
convention and that XT < −u. Optional sampling yields

1 = M0 = E[Mt∧T ] = E[MT 1{T≤t}] + E[Mt1{T>t}] ≥ E[MT 1{T≤t}]

since Mt ≥ 0. We have 1{T≤t} → 1{T<∞} for t→∞. Using monotone convergence,

1 ≥ lim
t→∞

E[MT 1{T≤t}] = E[MT lim
t→∞

1{T≤t}] = E[MT 1{T<∞}]

= E[e−RXT 1{T<∞}] > E[eRu1{T<∞}] = eRuP (T <∞) = eRuψ(u).

Rearranging, we have proved the following central result.

Theorem 7.1 (The Lundberg inequality). Consider the Cramér-Lundberg model and
assume that the adjustment coefficient R exists. Then

ψ(u) < e−Ru.

The Lundberg inequality says that if the moment-generating function of the claim sizes
exist, then the ruin probability decays at an exponential rate as a function of the initial
capital. In practice this means that claim sizes with exponentially decaying tails are not
very dangerous for the company. The rest of this lecture concerns how strong the Lundberg
inequality is. To study this problem in depth, we need tools from renewal theory.

8 Renewal theory

Definition 8.1. {Nt} is a renewal process if

(i) Nt ∈ N0 i.e. the process attains non-negative integer values,

(ii) Nt is increasing i.e. Ns ≤ Nt for s ≤ t and

(iii) the interarrival times {τi} are iid.
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Example 8.2. A Poisson process is a renewal process. In this case the interarrival times
are exponentially distributed.

Example 8.3. Consider the number of times the lightbulb of a specific lamp is replaced.
It would be unrealistic to assume that the time until the next change is independent of the
time since the last replacement. Therefore a Poisson process is likely not suitable since the
exponential distribution has the memorylessness property.

Let {Nt} denote any renewal process and F the distribution function of τ1. We will need
the concept of a convolution.

Definition 8.4. Let f be a function and G a nondecreasing function. The convolution f ∗G
is defined as the function

f ∗G(x) =

∫ x

0

f(x− y)dG(y).

Let F be a non-decreasing function. The n-fold convolution F ∗n is defined inductively by
F ∗2 = F ∗ F and F ∗n = F ∗(n−1) ∗ F . We define F ∗0 = 1[0,∞).

The convolution naturally appears when considering sums of independent variables. IfX and
Y are non-negative independent variables with distribution functions F and G, respectively,
then the distribution function of the sum is

P (X + Y ≤ z) =

∫ z

0

F (z − y)dG(y) = F ∗G(z).

A conditioning argument yields this result easily. The argument is left as an exercise.

We are interested in computing the mean E[Nt]. Recall that for any variable N taking
values in N0, we have the following result

E[N ] =

∞∑
n=1

P (N ≥ n)

sometimes called the tail sum formula. The formula follows by Tonelli’s theorem or more
intuitively by counting the quantities

P (N = 1)+

P (N = 2) + P (N = 2)+

P (N = 3) + P (N = 3) + P (N = 3)+

...

vertically instead of horisontally (as in the usual formula for the mean). We let the time of
the n’th claim be denoted by Tn = τ1 + · · · τn. Then

E[Nt] =

∞∑
n=1

P (Nt ≥ n) =

∞∑
n=1

P (Tn ≤ t) =

∞∑
n=1

P (τ1 + · · ·+ τn ≤ t) =

∞∑
n=1

F ∗n(t).

We are now ready to define the renewal function.
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Definition 8.5. Let Nt be a Lévy process and define the process Ñt = 1+Nt. The function

U(t) = E[Ñt] =

∞∑
n=0

F ∗n(t)

is called the renewal function.

U(t) counts the expected number of events in a renewal process. We want to show that U(t)
satisfies a special case of the so-called renewal equation. This equation is defined below.

Definition 8.6. Let F be a known distribution function and z a known function. The
equation

Z(t) = z(t) +

∫ t

0

Z(t− s)dF (s), t ≥ 0

where Z is an unknown function is called the renewal equation.

Let us show that E[Ñt] satisfies the renewal equation using a conditioning argument. Con-
sider E[Ñt | τ1 = s]. If s > t, we know that only one event has occured, so in this case
E[Ñt | τ1 = s] = 1. If s ≤ t, one event has occured plus all the events that occur from time
s to time t, hence E[Ñt | τ1 = s] = 1 + E[Ñt−s]. All in all,

E[Ñt | τ1 = s] =

{
1, s > t

1 + E[Ñt−s], s ≤ t
.

Using the tower property, we have

U(t) = E[Ñt] = E[E[Ñt | τ1]] = 1 +

∫ t

0

E[Ñt−s]dF (s) = 1 +

∫ t

0

U(t− s)dF (s),

and we see that U(t) satisfies the renewal equation with z(t) = 1 and F the distribution
function of the interarrival times. We finish this section by determining the solution to the
general renewal equation.

Proposition 8.7. If the fixed function z in the renewal equation is bounded on bounded
intervals, there exists a unique solution to the renewal equation which is bounded on bounded
intervals. The solution is given by

Z(t) = z ∗ U(t) =

∫ t

0

z(t− x)dU(x).

Proof. We first verify that the function Z(t) = z ∗ U(x) is a solution. We have

Z(t) = z ∗
∞∑
n=0

F ∗n(t) = z(t) + z ∗

( ∞∑
n=1

F ∗(n−1)

)
∗ F (t)

= z(t) + z ∗

( ∞∑
n=0

F ∗n

)
∗ F (t) = z(t) + Z ∗ F (t)

so Z indeed solves the renewal equation. As for uniqueness, assume Z1 is another solution
which is bounded on bounded intervals. Then

|Z(t)− Z1(t)| =
∣∣∣∣∫ t

0

Z(t− x)− Z1(t− x)dF (x)

∣∣∣∣ ≤ ∫ t

0

|Z(t− x)− Z1(t− x)|dF (x).
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We may continue this bound inductively and obtain

|Z(t)− Z1(t)| ≤
∫ t

0

|Z(t− x)− Z1(t− x)|dF ∗n(x) ≤ sup
0≤x≤t

|Z(x)− Z1(x)|F ∗n(t)

As Z and Z1 are bounded on [0, t] and F ∗n tends to zero for n → ∞, we get Z(t) = Z1(t)
as desired. �

9 The renewal theorems

The goal of this section is to study the solution

Z(t) = z ∗ U(t) =

∫ t

0

z(t− s)dU(s).

further.

Definition 9.1. A distribution function F is called arithmetic if the support of a random
variable with distribution function F is {0, γ, 2γ, ...} for some γ ∈ N. The largest such γ is
called the span of F . If F is not arithmetic, F is called nonarithmetic.

Recall that we write

f(t) ∼ g(t) as t→∞

if

lim
t→∞

f(t)

g(t)
= 1.

We can now state the first form of the renewal theorem. For proofs of the results in this
section, consult chapter XI in [3].

Theorem 9.2 (Renewal theorem (first form)). If F is a nonarithmetic distribution
function with F (x) = 0 for x < 0, then for h > 0,

U(t+ h)− U(t) ∼ h

µ
as t→∞

where µ =
∫∞

0
tdF (t) is the mean of F . If F is arithmetic then the result holds for h a

multiple of the span γ.

Example 9.3. Let us consider the special case where our renewal process {Nt} is Poisson
process. In this case, the interarrival times are exponentially distributed with mean µ = 1/λ.
Thus

U(t+ h)− U(t) = E[Ñt+h]−E[Ñt] = 1 + E[Nt+h]− (1 + E[Nt])

= λ(t+ h)− λt = λh =
h

µ
.

Hence the statement of the renewal theorem not only holds in the limit but at any given
time.
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We can now characterize the solution to the renewal equation using heuristic arguments.
By the renewal theorem,

U(t+ h)− U(t) ∼ h

µ
,

and we can think of this statement heuristically as dU(t) ≈ dt/µ. Hence

Z(t) =

∫ t

0

z(t−s)dU(s) ≈
∫ t

0

z(t−s)ds
µ

=
1

µ

∫ t

0

z(t−s)ds =
1

µ

∫ t

0

z(y)dy → 1

µ

∫ ∞
0

z(y)dy

as t → ∞. This statement can be stated in a formal manner which we will do shortly. We
first need a new concept of integrability.

Definition 9.4. Let z be a function on [0,∞) and h > 0. Define

mk(h) = sup{z(t) : (k − 1)h ≤ t < kh}, mk(h) = inf{z(t) : (k − 1)h ≤ t < kh}

i.e. mk(h) and mk(h) are the largest and smallest value in the interval [(k − 1)h, kh),
respectively. Define the corresponding Riemann sums

σ(h) = h

∞∑
k=1

mk(h), σ(h) = h

∞∑
k=1

mk(h).

z is called directly Riemann integrable if

−∞ < lim
h↓0

σ(h) = lim
h↓0

σ(h) <∞.

The difference between ordinary Riemann integrability and direct Riemann integrability can
be illustrated as follows. Whenever we want to compute an integral of the form∫ ∞

0

z(t)dt,

we start by computing ∫ K

0

z(t)dt

and afterwards we let K → ∞. This is an indirect way of evaluating the integral and
it does not take into account how z(t) fluctuates for large values of t. Direct Riemann
integrability is a more strict notion of integrability that makes no distinction between finite
and infinite intervals. Hence direct Riemann integrability makes fewer functions integrable.
The difference between the two notions becomes more clear with an example.

Example 9.5. Consider the function f : [0,∞)→ R defined by

f(x) =

{
n, x ∈ [n− 1/2n, n+ 1/2n] for some n ∈ N
0, else

.

Sketching the graph it is clear that f is well-defined. We claim that f is Riemann integrable
but not directly Riemann integrable. To see that f is Riemann integrable, note that for
K ∈ N, ∫ K

0

f(x)dx =

K−1∑
n=1

n

2n−1
+

K

2K+1
→

∞∑
n=1

n

2n−1
<∞.
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To see that f is not directly Riemann integrable, let h > 0. As the length of each interval
[n−1/2n, n+1/2n] goes to zero, eventually each such interval will be contained in an interval
of the form [(k − 1)h, kh) and thus σ(h) =∞.

Remark 9.6. It is not even sufficient for a function to be continuous and Riemann integrable
and with limit zero for t→∞ for it to be directly Riemann integrable. See example (a) on
page 363 in [3].

To establish that a function is directly Riemann integrable, the following lemma will be
useful.

Lemma 9.7. The following are sufficient conditions for a function z(t) on [0,∞) to be
directly Riemann integrable.

(i) z(t) is monotone and Riemann integrable.

(ii) z(t) is continuous a.e. and a(t) ≤ z(t) ≤ b(t) for directly Riemann integrable a(t) and
b(t).

(iii) z(t) ≥ 0 is continuous a.e. and σ(h) <∞ for some h > 0.

Proof. See page 69 of [1]. �

We can now state the second form of the renewal theorem.

Theorem 9.8 (Renewal theorem (second form)). If F is a nonarithmetic distribution
function and z is directly Riemann integrable then

Z(t)→ 1

µ

∫ ∞
0

z(y)dy for t→∞

with µ denoting the mean of the distribution F .

10 Exact asymptotics and the perturbation argument

Let

Ct = u+ ct−
Nt∑
i=1

Yi

be the standard Cramér-Lundberg process where {Nt} is a Poisson process independent of
the iid sequence {Yi} of claim sizes with common distribution function G. Recall that the
Lundberg inequality states that ψ(u) < e−Ru where R is the non-zero solution to Λ(−α) = 0.
We want to use our new tools from renewal theory to study the strength of this inequality.
This will lead to the so-called Cramér-Lundberg estimate.

The preliminary work on establishing the Cramér-Lundberg estimate uses a so called pertur-
bation argument . Let δ(u) = 1− ψ(u) denote the survival probability. Consider a ”small”
h > 0. In the time interval [0, h], there are three cases:

(1) Nh = 0 (no claims).

(2) Nh = 1, Y1 = y (one claim of size y).
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(3) Nh ≥ 2 (more than one claim).

We now consider what happens with the survival probability δ(u) when we condition on one
of these events.

(1) Nh = 0: No claims in the interval [0, h] corresponds to restarting the process at time
zero with initial capital u+ ch. Also, P (Nh = 0) = 1− λh+ o(h).

(2) Nh = 1, Y1 = y: If y ≤ u, we claim that the survival probability changes to δ(u −
y)+o(1). To justify this, we note that ruin probabilities are continuous from the right
due to continuity from above for measures. In particular, δ(u − y + ch) → δ(u − y)
for h → 0+. Also, P (Nh = 1) = λh + o(h). If y > u, then δ(u + ch) → 0 for h → 0
because ruin has already happened. Hence this case is only interesting if y ≤ u.

(3) Nh ≥ 2 (more than one claim). This case is negligible by the definition of a Poisson
process. We have P (Nh ≥ 2) = o(h).

We can now collect these observations and make a partition/conditioning argument to obtain

δ(u) = δ(u+ ch)(1− λh+ o(h)) +

∫ u

0

δ(u− y) + o(1)dG(y)(λh+ o(h)) + o(h).

Term one corresponds to case (1) and so forth. Elementary algebra yields

δ(u+ ch)− δ(u) = λh

(
δ(u+ ch)−

∫ u

0

δ(u− y) + o(1)dG(y)

)
+ o(h)

and thus

c
δ(u+ ch)− δ(u)

ch
= λ

(
δ(u+ ch)−

∫ u

0

δ(u− y) + o(1)dG(y)

)
+ o(1).

Assuming that the derivative δ′(u) exists, we get

c

λ
δ′(u) = δ(u)−

∫ u

0

δ(u− y)dG(y)

which is a so-called ”integral differential equation”. In the next lecture, we will use this
expression to derive a renewal equation which will lead to the Cramér-Lundberg estimate.

Supplementary: Convexity of the cumulant generating function

Proposition 10.1. Let X be a random variable where the moment generating function κ(α)
is finite in some neighbourhood of zero. The cumulant generating function Λ(α) = log κ(α)
is convex.

Proof. Let α = λα1 + (1 − λ)α2 with 0 < λ < 1. Letting p = 1/λ and q = 1/(1 − λ), we
have 1/p+ 1/q = 1. Then by Hölder’s inequality,

κ(α) = E
[
eαX

]
= E[eλα1Xe(1−λ)α2X ] ≤ E[eλpα1X ]1/pE[e(1−λ)qα2X ]1/q

= E[eα1X ]λE[eα2X ]1−λ = κ(α1)λκ(α2)1−λ
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and taking logarithms yields

Λ(α) ≤ λΛ(α1) + (1− λ)Λ(α2).

�

Corollary 10.2. The set {α ∈ R : Λ(α) <∞} is an interval.



Week 3 - The Cramér-Lundberg
estimate and subexponential
distributions

11 The Cramér-Lundberg estimate

At the end of the previous lecture, we derived the following integral differential equation for
the survival probability δ(u):

c

λ
δ′(u) = δ(u)−

∫ u

0

δ(u− y)dG(y).

In this section, we continue on our quest to derive a renewal equation involving the proba-
bility of ruin. We get the idea to integrate the left and right hand side. Explicitly, replace
u with x and integrate from 0 to u:

c

λ
(δ(u)− δ(0)) =

∫ u

0

δ(x)dx−
∫ u

0

∫ x

0

δ(x− y)dG(y)dx.

For simplicity, write

I(u) =

∫ u

0

δ(x)dx, A(u) =

∫ u

0

∫ x

0

δ(x− y)dG(y)dx.

To compute the integral A(u), we interchange the order of integration and apply integration
by parts to get

A(u) =

∫ u

0

∫ x

0

δ(x− y)dG(y)dx =

∫ u

0

∫ u

y

δ(x− y)dxdG(y)

=

∫ u

0

∫ u−y

0

δ(w)dwdG(y) =

∫ u

0

I(u− y)dG(y) = −
∫ u

0

I(u− y)d(1−G)(y)

= − [I(u− y)(1−G(y))]
u
0 −

∫ u

0

δ(u− y)(1−G(y))dy

= I(u)−
∫ u

0

δ(u− y)(1−G(y))dy,

so that
c

λ
(δ(u)− δ(0)) =

∫ u

0

δ(u− y)(1−G(y))dy.

18
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We rewrite this in terms of the ruin probability:

− c
λ

(ψ(u)− ψ(0)) =

∫ u

0

(1− ψ(u− y))(1−G(y))dy.

Letting u→∞ and applying monotone convergence yields

c

λ
ψ(0) =

∫ ∞
0

(1−G(y))dy

and thus

ψ(0) =
λ

c

∫ ∞
0

(1−G(y))dy.

Substituting this into the equation

− c
λ

(ψ(u)− ψ(0)) =

∫ u

0

(1− ψ(u− y))(1−G(y))dy

gives
c

λ
ψ(u) =

∫ ∞
u

(1−G(y))dy +

∫ u

0

ψ(u− y)(1−G(y))dy

i.e.

ψ(u) =
λ

c

∫ ∞
u

(1−G(y))dy +

∫ u

0

ψ(u− y)
λ

c
(1−G(y))dy.

This looks a lot like a renewal equation. The question is whether the function F with the
dynamics

dF (y) =
λ

c
(1−G(y))dy

is a distribution function. This can be checked:∫ ∞
0

dF (y) =
λ

c

∫ ∞
0

(1−G(y))dy =
λµY
c

< 1

due to the net profit condition. Hence F is not a distribution function and we are not done
yet. To remedy this issue, we multiply the expression for ψ(u) above with eαu. This gives
the equation

eαuψ(u) = eαu
λ

c

∫ ∞
u

(1−G(y))dy +

∫ u

0

eα(u−y)ψ(u− y)eαydF (y).

Let us fix some notation:

Zα(u) = eαuψ(u), zα(u) = eαu
λ

c

∫ ∞
u

(1−G(y))dy, dFα(y) = eαydF (y).

With this new notation, the equation above becomes

Zα(u) = zα(u) +

∫ u

0

Zα(u− y)dFα(y)
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and the goal now is to determine α such that Fα is a distribution function. We compute∫ ∞
0

dFα(y) =

∫ ∞
0

eαy
λ

c
(1−G(y))dy =

∫ ∞
0

eαy
λ

c

∫ ∞
y

dG(x)dy

=
λ

c

∫ ∞
0

∫ ∞
y

eαydG(x)dy =
λ

c

∫ ∞
0

∫ x

0

eαydydG(x)

=
λ

c

∫ ∞
0

(
1

α
eαx − 1

α

)
dG(x) =

λ

cα

∫ ∞
0

eαx − 1dG(x)

=
λ

cα
(κY (α)− 1)

and so we need to determine α such that

λ

cα
(κY (α)− 1) = 1.

We recognize this as the equation for the Lundberg coefficient. Hence α = R is the solution.
We now have the (proper) renewal equation

ZR(u) = zR(u) +

∫ u

0

ZR(u− y)dFR(y).

Assuming that G (and hence FR) is non-arithmetic and that zR is directly Riemann-
integrable, the second form of the renewal theorem yields

ZR(u)→ C :=
1

µR

∫ ∞
0

zR(x)dx <∞ for u→∞.

where µR denotes the mean of the distribution given by FR i.e.

µR =

∫ ∞
0

xdFR(x) =

∫ ∞
0

xeRx
λ

c
(1−G(x))dx.

Recalling that ψ(u) = e−RuZR(u), the result can be stated as follows:

Theorem 11.1 (The Cramér-Lundberg estimate). Assume the setup of the Cramér-
Lundberg model with a non-arithmetic distribution function G for the claim sizes and that
the adjustment coefficient R exists. Then

ψ(u) ∼ Ce−Ru for u→∞.

where C is given by

C =
c− λµY

λκ′Y (R)− c
.

Two things need to be checked, namely

(i) zR is directly Riemann integrable.

(ii) C = (c− λµY )/(λκ′Y (R)− c).

Both of these assertions are left as exercises. We have now seen a classical approach to
estimate the ruin probability. Many alternative methods exist, but most of them are obsolete
since we can achieve good estimates simply by simulating. One method which still carries
modern relevance is the method of Laplace transforms.
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12 Laplace transforms

Definition 12.1. Let f : [0,∞)→ R be a function. The function

f̂(α) =

∫ ∞
0

e−αxf(x)dx

is called the (classical) Laplace transform of f .

There is a connection between Laplace transforms and random variables. Let Y be a non-
negative random variable with density f . Then

f̂(α) =

∫ ∞
0

e−αxf(x)dx = E[e−αY ] = κY (−α)

where κY as usual denotes the moment generating function of Y . The Laplace transform
has many nice properties. We collect these in the following proposition.

Proposition 12.2. Let f : [0,∞)→ R be a function. The following properties hold:

(i) If f(x) ≥ 0 a.e. then

f̂(α) ≤ f̂(β) ⇔ α ≥ β.

(ii) If f(x) ≥ 0 a.e. then |̂f |(α) <∞ implies |̂f |(β) <∞ for all β ≥ α.

(iii) If f ′ exists a.e. and |̂f |(α) <∞ then

f̂ ′(α) = αf̂(α)− f(0).

(iv) f̂ is a convex function when f is positive a.e.

(v) f̂ is differentiable on the interior of its domain provided f ′ exists.

(vi) f̂ determines f uniquely (if f̂ = ĝ then f = g).

Proof. Assertions (i) and (ii) are clear. To prove (iii), we use integration by parts as follows:

f̂ ′(α) =

∫ ∞
0

e−αxf ′(x)dx =
[
e−αxf(x)

]∞
0

+

∫ ∞
0

f(x)αe−αxdx = αf̂(α)− f(0).

In the last equality, we used that the Laplace transform of |f | is finite in α which implies

that f(x)e−αx → 0 for x→∞. To prove (iv) let g(α) = log f̂(α) and let λ ∈ [0, 1]. We then
have

g(λα+ (1− λ)β) = log

∫ ∞
0

e−(λα+(1−λ)β)xf(x)dx

= log

∫ ∞
0

(e−αxf(x))λ(e−βxf(x))1−λdx

≤ log

((∫ ∞
0

e−αxf(x)dx

)λ(∫ ∞
0

e−βxf(x)dx

)1−λ
)

= λ log

∫ ∞
0

e−αxf(x)dx+ (1− λ) log

∫ ∞
0

e−βxf(x)dx

= λg(α) + (1− λ)g(β)
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where we apply Hölder’s inequality in the third line. It follows that g is convex. Taking the
exponential function on both sides gives the result. (v) follows by interchanging differenti-
ation and integration. The details are left to the reader. A proof of (vi) can be found in
section 3.1 of [8].

�

We will now compute the Laplace transform of the survival probability. This will allow us
to determine δ(u) (and hence ψ(u)) explicitly in the case of exponential claims. Recall that
we have the differential integral equation for the survival probability given by

c

λ
δ′(u) = δ(u)−

∫ u

0

δ(u− y)dG(y).

Taking the Laplace transform of both sides gives the equation

c

λ

(
αδ̂(α)− δ(0)

)
= δ̂(α)−

∫ ∞
0

∫ u

0

δ(u− y)dG(y)e−αudu

where we have used the properties of the Laplace transform. It remains to compute the
integral on the right hand side:∫ ∞

0

∫ u

0

δ(u− y)dG(y)e−αudu =

∫ ∞
0

∫ ∞
y

δ(u− y)e−αududG(y)

=

∫ ∞
0

∫ ∞
0

δ(v)e−αvdve−αydG(y)

=

∫ ∞
0

δ̂(α)e−αydG(y) = δ̂(α)κY (−α).

Hence our equation becomes

c

λ

(
αδ̂(α)− δ(0)

)
= δ̂(α)(1− κY (−α)).

Earlier we computed

ψ(0) =
λ

c

∫ ∞
0

(1−G(y))dy =
λµY
c

and thus δ(0) = 1− λµY
c
.

Plugging this expression for δ(0) into the previous equation yields

−c+ λµY + cαδ̂(α) = λδ̂(α)(1 + κY (−α))

and a bit of high school algebra gives us the final result

δ̂(α) =
c− λµY

cα− λ(1− κY (−α))
for α > 0.

Note that if α ≤ 0 then δ̂(α) =∞ and nothing interesting happens. We are interested in the
survival probability itself and not its Laplace transform. Due to the uniqueness property
of the Laplace transform, we should be able to invert δ̂(α) and obtain δ(u). There exist
numerical methods to do this but we are interested in an analytical expression if possible.
This turns out to be possible in some rare cases.
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Example 12.3. Assume that we have exponential claim sizes Yi ∼ Exp(θ). Then µY = 1/θ
and

κY (−α) =
θ

θ + α
.

In this case δ̂(α) becomes

δ̂(α) =
c− λ 1

θ

cα− λ
(

1− θ
θ+α

) =
1

α
− λ

cθ

1

α+
(
θ − λ

c

) .
Recall that ψ(u) decays like a constant times an exponential function so there are not many
choices for a candidate of δ(u). Consider a function of the form

f(u) = 1−Ae−βu

and let α > 0. Then

f̂(α) =

∫ ∞
0

f(u)e−αudu =

∫ ∞
0

e−αu −Ae−(α+β)udu =
1

α
−A 1

α+ β
.

By the uniqueness of the Laplace transform, δ(u) must be a function of the same form as
f . We can identify A = λ/cθ and β = θ − λ

c . Hence we obtain the exact survival and ruin
probabilities

δ(u) = 1− λ

cθ
e−(θ−λc )u, and ψ(u) =

λ

cθ
e−(θ−λc )u.

13 Subexponential distributions

Recall the setup for the important results so far. In the Cramér-Lundberg process

Ct = u+ ct−
Nt∑
i=1

Yi, Xt = Ct − u, Yi ∼ G

it only makes sense to talk about the Lundberg inequality and the Cramér-Lundberg es-
timate when the adjustment coefficient R exists. Recall that R is defined as the strictly
positive number that satisfies Λ(−R) = 0 where

Λ(α) = log E[eαX1 ].

What are necessary conditions for R to exist? We definitely need that Λ(−α) <∞ for some
α > 0 where

Λ(−α) = −αc+ λ(κY (α)− 1)

hence it is necessary that κY (α) <∞ for some α > 0. What is a sufficient condition for R
to exist? If κY (α) < ∞ for some α > 0 and κY is continuous for all α where the function
exists. The reason continuity matters is that a typical issue is that κY (α) < ∞ for α > 0.
Some classical distributions in non-life insurance include

� Yi ∼ Exp(θ) with density f(x) = θe−θx for x > 0.

� Yi ∼ Gamma(α, β) with density f(x) = βα

Γ(α)x
α−1e−βx for x > 0.
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� Yi ∼ |Wi| with Wi ∼ N (0, 1) (the folded/truncated normal) .

The exponential and gamma distributions are used a lot because R can be computed ex-
plicitly. Usually R needs to be approximated numerically. But what if R does not exist at
all? This happens for heavy-tailed distributions. We have

κY (α) =

∫ ∞
0

eαydG(y)

so the question is whether G decays slower than exponential functions. If this is the case,
κY (α) =∞ for all α > 0. Some examples of this behaviour follow.

Example 13.1. Consider the lognormal distribution with parameters (µ, σ2). This distri-
bution is obtained by taking the exponential function of a N (µ, σ2) distributed variable. In
particular the distribution is supported on (0,∞). The density of this distribution is

f(x) =
1√

2πσ2x
e−

(log x−µ)2

2σ2 for x > 0.

It can be shown that κY (α) =∞ for all α > 0 for Y with this distribution.

Example 13.2. Consider the Pareto distribution with parameters α, β > 0. The survival
function of a variable Y with this distribution is given by

G(x) = P (Y > x) =
βα

(β + x)α
for x ≥ 0.

This function decays slower than any exponential function and thus κY (α) = ∞ for any
α > 0. This distribution belongs to the class of regularly varying distributions . This class
has survival functions of the form

G(x) = L(x)x−α

where L is a slowly varying function . This is a function L : (0,∞)→ R which satisfies

lim
x→∞

L(tx)

L(x)
= 1

for all t > 0. Examples include logarithms and constants.

The rest of this lecture is dedicated to introducing a useful notion of being ”heavy-tailed”,
namely the concept of subexponential distributions

Definition 13.3. A distribution function G on [0,∞) is subexponential if

lim
x→∞

1−G∗2(x)

1−G(x)
= 2.

We denote the set of subexponential distribution functions by S.

Remark 13.4. If G ∈ S and Y1, Y2 ∼ G are independent, the above definition says that

lim
x→∞

P (Y1 + Y2 > x)

P (Y1 > x)
= 2.
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An interpretation of the definition is as follows. For general Y1 and Y2, we have

P (Y1 + Y2 > x) ≥ P (Y1 > x) + P (Y2 > x)− P (Y1 > x, Y2 > x).

since one possible way for Y1 + Y2 > x to occur is if exactly one of Y1 or Y2 surpasses x,
that is, one large jump occurs. If Y1 and Y2 are independent,

P (Y1 > x)+P (Y2 > x)−P (Y1 > x, Y2 > x) = P (Y1 > x)+P (Y2 > x)−P (Y1 > x)P (Y2 > x)

and it follows that

lim
x→∞

P (Y1 + Y2 > x)

P (Y1 > x)
≥ 2.

Hence a distribution is subexponential if for independent Y1, Y2 ∼ G, Y1 + Y2 > x happens
because of one large jump as x gets large. In particular, ruin will occur because of one
large claim. This is very different from classical distributions where one can prove that ruin
happens gradually.

Example 13.5. Let Y1, Y2 ∼ Exp(θ) be independent. Then Y1 + Y2 ∼ Gamma(2, θ). By
L’Hospital’s rule,

lim
x→∞

P (Y1 + Y2 > x)

P (Y1 > x)
= lim
x→∞

∫∞
x
θ2ye−θydy

e−θx
= lim
x→∞

−θ2xe−θx

−θe−θx
=∞

so the exponential distribution is not subexponential.

We now consider some properties of subexponential distributions.

Proposition 13.6. If G ∈ S, then

lim
x→∞

1−G(x− a)

1−G(x)
= 1 for all a ∈ R.

Proof. Let a ≥ 0. We have

1−G∗2(x)

1−G(x)
− 1 =

G(x)−G∗2(x)

1−G(x)

=

∫ a

0

1−G(x− y)

1−G(x)
dG(y) +

∫ x

a

1−G(x− y)

1−G(x)
dG(y)

≥ G(a) +
1−G(x− a)

1−G(x)
(G(x)−G(a)).

Rearranging gives

1 ≤ 1−G(x− a)

1−G(x)
≤ (G(x)−G(a))−1

(
1−G∗2(x)

1−G(x)
− 1−G(a)

)
and letting x→∞ yields

1 ≤ lim
x→∞

1−G(x− a)

1−G(x)
≤ (1−G(a))−1(1−G(a)) = 1

which proves the result for the case a ≥ 0. If a < 0, then

lim
x→∞

1−G(x− a)

1−G(x)
= lim
x→∞

1
1−(G(x−a)−(−a))

1−G(x−a)

= 1

by the previous case. This completes the proof. �
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This result has a natural interpretation. Let Y ∼ G where G ∈ S. A special case of the
proposition says that

lim
x→∞

P (Y > x+ a)

P (Y > x)
= lim
x→∞

P (Y > x+ a | Y > x) = 1

for any a > 0. This means that if we know Y has attained some large value x, it is very
likely to attain an even larger value as well. As an exercise the reader can verify that this
is not the case for the exponential distribution for example.

Proposition 13.7. Assume G ∈ S. Then for all n ∈ N, we have

lim
x→∞

1−G∗n(x)

1−G(x)
= n.

Proof. We use induction on n. By assumption, the assertion holds for n = 2. Assume that
the claim holds for some n. Let ε > 0 and choose a such that∣∣∣∣1−G∗n(x)

1−G(x)
− n

∣∣∣∣ < ε

for x ≥ a. Write

1−G∗(n+1)(x)

1−G(x)
=

1−G(x) +G(x)−G∗(n+1)(x)

1−G(x)
= 1 +

G(x)−G∗(n+1)(x)

1−G(x)

= 1 +

∫ x

0

1−G∗n(x− y)

1−G(x)
dG(y)

= 1 +

∫ x−a

0

1−G∗n(x− y)

1−G(x− y)

1−G(x− y)

1−G(x)
dG(y) +

∫ x

x−a

1−G∗n(x− y)

1−G(x)
dG(y).

We can bound the second integral by∫ x

x−a

1−G∗n(x− y)

1−G(x)
dG(y) ≤ G(x)−G(x− a)

1−G(x)
=

1−G(x− a)

1−G(x)
− 1

and by the previous proposition this tends to zero for x→∞. Before turning to the other
integral, consider∫ x−a

0

n
1−G(x− y)

1−G(x)
dG(y) = n

(
G(x)−G∗2(x)

1−G(x)
−
∫ x

x−a

1−G(x− y)

1−G(x)
dG(y)

)
.

The first term in the parantheses on the right converges to one and the other term converges
to zero by the same argument as above. Hence the left hand side converges to n as x→∞.
We now get ∣∣∣∣∫ x−a

0

(
1−G∗n(x− y)

1−G(x− y)
− n

)
1−G(x− y)

1−G(x)
dG(y)

∣∣∣∣
≤ ε

(
G(x)−G∗2(x)

1−G(x)
−
∫ x

x−a

1−G(x− y)

1−G(x)
dG(y)

)
→ ε

as x→∞ using the same arguments as before. Combining all our arguments yields

lim
x→∞

∣∣∣∣1−G∗(n+1)(x)

1−G(x)
− (n+ 1)

∣∣∣∣ ≤ ε.
As ε > 0 was chosen arbitrarily, the claim follows. �
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The following property is useful for domination arguments.

Proposition 13.8. Let G ∈ S. For any ε > 0, there exists a finite constant D (dependent
on ε) such that

1−G∗n(x)

1−G(x)
≤ D(1 + ε)n for all x > 0 and n ∈ N.

Proof. We use induction on n. The claim is trivial for n = 1 so assume the result holds for
some n. Then (1−G∗n(x)/(1−G(x) is bounded, so we may define

αn = sup
t≥0

1−G∗n(t)

1−G(t)
.

We note that
1−G∗2(x)

1−G(x)
= 1 +

G(x)−G∗2(x)

1−G(x)

and since G is subexponential, we may find a T ≥ 0 such that

sup
t≥T

G(t)−G∗2(t)

1−G(t)
< 1 +

ε

2
.

We can now estimate

αn+1 ≤ 1 + sup
0≤t≤T

∫ t

0

1−G∗n(t− y)

1−G(t)
dG(y) + sup

t≥T

∫ t

0

1−G∗n(t− y)

1−G(t)
dG(y)

≤ 1 +
1

1−G(T )
+ sup
t≥T

∫ t

0

1−G∗n(t− y)

1−G(t− y)

1−G(t− y)

1−G(t)
dG(y)

≤ 1 +
1

1−G(T )
+ αn sup

t≥T

G(t)−G∗2(t)

1−G(t)
≤ 1 +

1

1−G(T )
+ αn

(
1 +

ε

2

)
.

Now choose

D = max

{
2(1 + 1/(1−G(T )))

ε
, 1

}
.

The reason for the max is to ensure that α1 = 1 < D(1 + ε).
�

In the start of the next lecture we will see some methods to determine whether a distribution
is subexponential.



Week 4 - Ladder heights and
subexponential ruin

14 Checking subexponentiality

A possible way to check that a distribution is subexponential is the following ”closure
property”. If F is subexponential and G behaves in the sammer manner as F in the tail, G
is also subexponential.

Proposition 14.1 (Closure property of subexponential distributions). Suppose F
and G are distribution functions on [0,∞) with F ∈ S and such that

lim
x→∞

G(x)

F (x)
= c

for some constant c > 0. Then G ∈ S also.

Proof. See Lemma 1.35 in [6]. �

Remark 14.2. This proposition can be extended to more distribution functions in the fol-
lowing way. If Gi, i = 1, 2, satisfy

Gi(x) ∼ ciF (x) for i = 1, 2, x→∞

and F ∈ S, then G1, G2 ∈ S also.

Before providing a more concrete method to establish subexponentiality, we need a defini-
tion.

Definition 14.3. Let G be a distribution function with density g. The failure rate of G is
given by

λ(x) =
g(x)

G(x)
.

Proposition 14.4. Let G have density g and failure rate λ. Assume that λ(x) → 0 for
x→∞ and that there exists a fixed x0 ∈ R such that for x ≥ x0, λ(x) is decreasing. If∫ ∞

0

exλ(x)g(x)dx <∞,

then G ∈ S.

28
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Proof. This proof is from [2]. Splitting the area of integration into the two parts [0, x0] and
[x0,∞), we note that the integral over [0, x0] is always finite. Hence it suffices to consider
the case x0 = 0 so that λ(x) is everywhere decreasing. Define

Λ(x) =

∫ x

0

λ(y)dy,

so that G = e−Λ(x) (exercise). We get

1−G∗2(x)

1−G(x)
− 1 =

1−G∗2(x)− (1−G(x))

1−G(x)
=
G(x)−G∗2(x)

1−G(x)

=

∫ x

0

1−G(x− y)

1−G(x)
dG(y) =

∫ x

0

G(x− y)

G(x)
g(y)dy

=

∫ x

0

eΛ(x)−Λ(x−y)−Λ(y)λ(y)dy

=

∫ x/2

0

eΛ(x)−Λ(x−y)−Λ(y)λ(y)dy +

∫ x/2

0

eΛ(x)−Λ(x−y)−Λ(y)λ(x− y)dy

where the last equality follows from applying the substitution y 7→ x− y. For y < x/2,

Λ(x)− Λ(x− y) =

∫ x

x−y
λ(v)dv ≤ (x− (x− y))λ(x− y) = yλ(x− y) ≤ yλ(y)

where we have used that λ is decreasing. Hence∫ x/2

0

eΛ(x)−Λ(x−y)−Λ(y)λ(y)dy ≤
∫ x/2

0

eyλ(y)−Λ(y)λ(y)dy =

∫ x/2

0

eyλ(y)g(y)dy

which is finite by assumption. The bound Λ(x)− Λ(x− y) ≤ yλ(x− y) shows that Λ(x)−
Λ(x− y)→ 0 for x→∞. We can now apply dominated convergence as follows:

lim
x→∞

∫ x/2

0

eΛ(x)−Λ(x−y)−Λ(y)λ(y)dy =

∫ ∞
0

lim
x→∞

1[0,x/2](y)eΛ(x)−Λ(x−y)−Λ(y)λ(y)dy

=

∫ ∞
0

e−Λ(y)λ(y)dy =

∫ ∞
0

g(y)dy = 1.

Using the inequality λ(x−y) ≤ λ(y) for y < x/2, we can again apply dominated convergence
to the integral ∫ x/2

0

eΛ(x)−Λ(x−y)−Λ(y)λ(x− y)dy,

except now the limit is zero. Hence

lim
x→∞

(
1−G∗2(x)

1−G(x)
− 1

)
= 1

proving that G is subexponential as desired.
�
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Example 14.5. Consider the Pareto distribution with parameters α and β. Then

G(x) =
βα

(β + x)α
=

1

(1 + x/β)α
for x ≥ 0.

The density is

g(x) = −G′(x) =
α

β

1

(1 + x/β)α+1

and the failure rate is

λ(x) =
α

β

1

(1 + x/β)
.

We see that λ is a decreasing function on (0,∞). Note also that

lim
x→∞

x
α

β

1

1 + x/β
= α and lim

x→0
x
α

β

1

1 + x/β
= 0.

Thus xλ(x) is a continuous bounded function and so exλ(x) ≤ C for some constant C > 0.
This implies ∫ ∞

0

exλ(x)g(x)dx ≤ C
∫ ∞

0

g(x)dx = C <∞

and using the above proposition, we can conclude that G is subexponential.

15 The method of ladder heights

Before we can study the ruin problem for the subexponential case, we need new techniques.
We can no longer establish the Lundberg inequality or the Cramér-Lundberg estimate since
the moment-generating function does not exist in a neighbourhood around zero for a subex-
ponential distribution. In this section we will investigate the idea of ladder heights .

Consider again the Cramér-Lundberg process

Ct = u+ ct−
Nt∑
i=1

Yi

where as usual, Xt = Ct − u. The first time Xt goes below zero is called the first ladder
height time and is denoted by T−1 . Formally,

T−1 = inf{t ≥ 0 : Xt < 0}.

Note that T−1 does not need to be finite. If T−1 is finite, it is of interest to study the size of
the first negative value i.e. the size of the first ”dip” below zero. The size of this absolute
value L1 is called the first ladder height. Formally,

L1 = |XT−1
|.

We emphasise that L1 is only defined conditional on the event {T−1 <∞} (we will return to
this issue). We can compute P (T−1 < ∞). Indeed, if we have a Cramér-Lundberg process
with u = 0, then Xt = Ct and thus P (T−1 <∞) = ψ(0) = λµY /c. Note that this number is
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in (0, 1) due to the NPC. We can now consider the second ladder height. The second ladder
height time T−2 is the first time Xt falls below −L1 i.e.

T−2 = inf{t ≥ T−1 : Xt < XT−1
}

and the second ladder height is

L2 = |XT−2
| − L1

which is defined conditional on the event {T−2 < ∞}. We can of course continue this
construction. We summarise this discussion in the following definition.

Definition 15.1. For the Cramér-Lundberg process {Ct} with Xt = Ct − u, the ladder
height times are defined inductively by

T−0 = 0 and T−i = inf{t ≥ T−i−1 : Xt < XT−i−1
} for i > 0

conditional on the event {T−i−1 < ∞, τ
−
i < ∞}. The τ−i are called the inter-ladder height

times or ladder epochs and are defined by τ−1 = T−1 and τ−i = T−i − T
−
i−1 for i > 0. The

ladder heights are defined inductively by

L0 = 0, and Li = |XT−i
−XT−i−1

| = |XT−i
| − (L1 + · · ·Li−1) for i > 0

conditional on the event {T−i−1 <∞, τ
−
i <∞}.

Proposition 15.2. {τ−i } and {Li} are iid sequences.

Proof. This follows from {Xt} being a Lévy process. Indeed, the independent and stationary
increments imply that at each ladder height time, we can think of the process as starting
from scratch. �

Remark 15.3. To get around the problem with the Li being defined conditional on the event
{T−i−1 <∞, τ

−
i <∞} only, we implicitly extend Li to the whole space by defining Li to have

the same distribution on {T−i−1 =∞} ∪ {τ−i =∞}. Then Li is independent of {τ−i <∞}.
The following result describes the distribution of the Li.

Lemma 15.4. The survival function G0 of L1 is given by

G0(x) = P (L1 > x) =
1

µY

∫ ∞
x

(1−G(y))dy for x ≥ 0.

We will provide a proof of this lemma later. A distribution function of this form is important
enough to get its own name.

Definition 15.5. Let Y be a non-negative random variable with mean µY < ∞. The
distribution given by the distribution function

1

µY

∫ ∞
x

(1−G(y))dy for x ≥ 0

is called the stationary excess distribution or the integrated tail distribution of Y .
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16 Ladder heights and the ruin probability for subexponential
claims

We can now study the ruin probability using ladder heights. Each ladder height describes a
new minimum of {Xt}. Let K = max{i : T−i < ∞} denote the number of observed ladder
heights. Then XT−K

is the smallest value of {Xt} i.e.

inf
t≥0

Xt = −(L1 + · · ·+ LK).

The probability of ruin may then be stated as

ψ(u) = P

(
inf
t≥0

Xt < −u
)

= P (L1 + · · ·+ LK > u).

If we live in a heavy-tailed world with subexponential Li we would expect the approximation
ψ(u) ≈ E[K]P (L1 > u) to hold but we need to make this precise. The first step is to study
the so-called severity of ruin. In the event that the company goes bankrupt a relevant
question to ask is by how much we are ruined. This leads to the following definition.

Definition 16.1. Let T = inf{t ≥ 0 : Xt < −u} denote the time of ruin. For x ≥ 0, the
quantity

ψx(u) = P (T <∞, XT < −(u+ x))

is called the severity of ruin. x is called the severity.

We note that ψx(0) describes the first ladder height. Indeed,

ψx(0) = P (T <∞, XT < −x) = P (T−1 <∞, L1 > x).

The strategy now is to compute ψx(u) generally and then specialize to the case u = 0. The
first step is to find an integral-differential equation for ψx(u) via a perturbation argument.
This will be very similar to the argument that was given earlier in the course.

Consider a small interval [0, h]. We have three cases, namely

(i) Nh = 0 which occurs with probability P (Nh = 0) = 1− λh+ o(h),

(ii) Nh = 1 with probability P (Nh = 1) = λh+ o(h) and

(iii) Nh ≥ 2 which is negligible due to P (Nh ≥ 2) = o(h).

We consider each case.

(i) In this case the initial capital increases to u+ ch. Hence ψx(u) changes to ψx(u+ ch).

(ii) This is the most complicated case. Assume that we have one claim Y1 of size Y1 = y.
We have

P (T <∞, XT < −(u+ x) | Nh = 1, Y1 = y) =


ψx(u− y) + o(1), 0 < y ≤ u
o(1), u < y ≤ u+ x

1 + o(1), y > u+ x

.
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The case 0 < y ≤ u is the same as for the ordinary ruin probability. Since ruin does
not occur, a new process starts at the lower initial capital u− y and o(1) takes care of
the negligible premiums that the company receives. The case u < y ≤ u+x yields the
probability 0 + o(1) because ruin has occured but the process has not surpassed the
severity x. Formally, one can think of this case as intersecting {T <∞, XT < −(u+x)}
and {XT ≥ −(u+ x)} which is the empty set. The last case is self-explanatory.

(iii) This case is negligible.

Combining our considerations, we arrive at

ψx(u) = (1− λh+ o(h))ψx(u+ ch)

+ (λh+ o(h))

(∫ u

0

ψx(u− y) + o(1)dG(y) +

∫ ∞
u+x

1dG(y) + o(1)

)
+ o(h)

= (1− λh+ o(h))ψx(u+ ch) + (λh+ o(h))

(∫ u

0

ψx(u− y) + o(1)dG(y) + 1−G(u+ x)

)
+ o(h).

We rearrange this equation and obtain

c
ψx(u+ ch)− ψx(u)

ch
= λ

(
ψx(u+ ch)−

∫ u

0

ψx(u− y) + o(1)dG(y)− (1−G(u+ x))

)
+ o(1).

Letting h→ 0+ gives

c

λ
ψ′x(u) = ψx(u)−

∫ u

0

ψx(u− y)dG(y)− (1−G(u+ x))

which is very reminiscent of the equation we got for the ordinary ruin probability. Just like
we did then, we can integrate from 0 to u and obtain the integral equation

c

λ
(ψx(u)− ψx(0)) =

∫ u

0

(1−G(y))ψx(u− y)dy −
∫ u

0

(1−G(y + x))dy.

The detailed calculation is at the end of this week’s material and is purely supplementary.

17 More on ladder heights

Recall that we derived the integral equation

c

λ
(ψx(u)− ψx(0)) =

∫ u

0

(1−G(y))ψx(u− y)dy −
∫ u

0

(1−G(y + x))dy.

for ψx(u). The goal of this short section is to prove Lemma 15.4 which gave us the distri-
bution of the first ladder height. We first need the following result.

Lemma 17.1. ψx(u)→ 0 for u→∞.

Proof. Note that ψx(u) ≤ ψ(u) for any x > 0. Define Y = − inft≥0Xt. Then

ψ(u) = P

(
inf
t≥0

Xt < −u
)

= P (Y > u).

Noting that Y <∞ a.s. since Xt has positive drift (because of NPC), we have P (Y > u)→ 0
for u→∞ and thus ψ(u)→ 0 for u→∞. This finishes the proof.

�
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Proof of Lemma 15.4. Letting u→∞ in the integral equation for ψx(u) implies

− c
λ
ψx(0) =

∫ ∞
0

(1−G(x+ y))dy =

∫ ∞
x

(1−G(y))dy

since the first integral vanishes due to dominated convergence and the previous lemma. Now
recall that

ψx(0) = P (T−1 <∞, L1 > x)

so

P (T−1 <∞, L1 > x) =
λ

c

∫ ∞
x

(1−G(y))dy.

Recall that we implicitly extend L1 to the whole space such that {L1 > x} and {T−1 <∞}
are independent. The calculation can now be completed as follows

P (L1 > x) =
P (L1 > x, T−1 <∞)

P (T−1 <∞)
=

1

P (T−1 <∞)

λ

c

∫ ∞
x

(1−G(y))dy

=
1

λµY
c

λ

c

∫ ∞
x

(1−G(y))dy =
1

µY

∫ ∞
x

(1−G(y))dy

and the proof is complete.

�

18 Subexponential ruin: tail asymptotics

Recall that if L1, ..., LK are the observed ladder heights, we can write the probability of
ruin as

ψ(u) = P (L1 + · · ·+ LK > u)

where L1 ∼ G0 with

G0(x) =
1

µY

∫ ∞
x

(1−G(y))dy

the integrated tail distribution of the claims. In this section we study the case of subexpo-
nential ladder heights i.e. G0 ∈ S. From the previous week we have the following facts:

(i) P (L1 + · · ·+ Ln > u) ∼ nP (L1 > u) as u→∞ and

(ii) for any ε > 0 there exists a constant D such that P (L1 + · · ·+Ln > u)/P (L1 > u) ≤
D(1 + ε)n for any x, n.

We will use these facts to prove the following theorem.

Theorem 18.1 (Ruin asymptotics for subexponential ladder heights). Assume the
Cramér-Lundberg model where the ladder heights are subexponential. Then

ψ(u) ∼ λµY
c− λµY

G0(u) =
λµY

c− λµY
1

µY

∫ ∞
u

(1−G(y))dy.
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Proof. We start by noting that K is independent of {Li}. We get

lim
u→∞

ψ(u)

G0(u)
= lim
u→∞

P (L1 + · · ·+ LK > u)

G0(u)

= lim
u→∞

∞∑
n=0

P (K = n)
P (L1 + · · ·Ln > u | K = n)

G0(u)

= lim
u→∞

∞∑
n=0

P (K = n)
P (L1 + · · ·Ln > u)

G0(u)
.

We wish to interchange the sum and the limit. In order to do so, we apply the dominated
convergence theorem. Hence we need to show that the sum is bounded uniformly in u. Let
ε > 0, then by fact (ii) above, there is some constant D such that

∞∑
n=0

P (K = n)
P (L1 + · · ·+ Ln > u)

G0(u)
≤
∞∑
n=0

P (K = n)D(1 + ε)n.

To make this sum finite, we have to choose a proper ε. Recall from the exercises that K
follows a geometric distribution with succes parameter p = λµY /c < 1. Hence P (K = n) =
pn(1− p) and the above sum equals

(1− p)D
∞∑
n=0

(p(1 + ε))n.

We have

p(1 + ε) < 1 ⇔ ε <
1

p
− 1.

Choosing such an ε, we see that the conditions of the dominated convergence theorem are
satisfied. We can now continue the first calculation using fact (i)

lim
u→∞

ψ(u)

G0(u)
=

∞∑
n=0

P (K = n) lim
u→∞

P (L1 + · · ·+ LK > u)

G0(u)

=

∞∑
n=0

P (K = n)n = E[K] =
λµY

c− λµY
.

The proof is now complete. �

Remark 18.2. It is important to note that the theorem does not assume the claim sizes are
subexponential. It assumes that the integrated tail distribution of the claims are subexpo-
nential.

We will see an application of this theorem in the exercises. Note the difference compared to
the asymptotics for the ruin probability in the classical case. Here the ruin probability decays
a lot slower. Moreover, the theorem tells us that ruin in this case is highly unpredictable.
Ruin occurs because one large claim bankrupts the company where in the classical case,
ruin is gradual.
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19 Introduction to the renewal risk model

So far we have studied the Cramér-Lundberg model

Ct = u+ ct−
Nt∑
i=1

Yi, {Yi} iid, Yi ∼ G, {Nt} a Poisson process with intensity λ.

This model can be generalized in many ways. We will extend the model so that {Nt} is
no longer necessarily a Poisson process but any renewal process. All other assumptions are
kept including the independence of the claims and arrival times. This extended model is
called the renewal risk model or the Sparre Andersen model.

A very essential consequence of {Nt} being a Poisson process is that Xt = Ct − u is a Lévy
process. This no longer holds for general renewal processes. Hence we need a new way
of studying {Xt}. To study this process we will use the random walk representation. We
observe that ruin can only occur at an arrival time Tn. Indeed, between arrival times, the
process increases since the company collects premiums. Hence we can simplify the study of
{Xt} into a problem concerning a discrete time process.

Definition 19.1. If {τi} denotes the iid sequence of interarrival times for the renewal
process {Nt} (so that Tn = τ1 + · · ·+ τn), define the random variables

Zi = Xτi = cτi − Yi.

We call the discrete time stochastic process {Sn} given by

Sn = XTn =

n∑
i=1

Zi

the random walk representation of {Xt}.

Note that Zi is the increase in {Xt} between claim i− 1 and claim i. We also remark that
{Zi} is an iid sequence. We can now write the probability of ruin as

ψ(u) = P (XTi < −u for some i) = P (Sn < −u for some n).

Supplementary: Deriving the integral equation for ψx(u)

We integrate the equation

c

λ
ψ′x(u) = ψx(u)−

∫ u

0

ψx(u− y)dG(y)− (1−G(u+ x))

from 0 to u (after replacing u with v) and obtain

c

λ
(ψx(u)− ψx(0)) =

∫ u

0

ψx(v)dv −
∫ u

0

∫ v

0

ψx(v − y)dG(y)dv −
∫ u

0

1−G(v + x)dv.

We give the first integral on the right hand side a name:

I(u) =

∫ u

0

ψx(v)dv,
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then we note that

I(u− y) =

∫ u−y

0

ψx(v)dv =

∫ u

y

ψx(w − y)dw.

Now we consider the second integral. Interchanging the order of integration and applying
integration by parts yields∫ u

0

∫ v

0

ψx(v − y)dG(y)dv =

∫ u

0

∫ u

y

ψx(v − y)dvdG(y) =

∫ u

0

I(u− y)dG(y)

= −
∫ u

0

I(u− y)d(1−G)(y)

= [−I(u− y)(1−G(y))]
u
0 −

∫ u

0

(1−G(y))ψx(u− y)dy

= I(u)−
∫ u

0

(1−G(y))ψx(u− y)dy.

Plugging back into our expression from before gives

c

λ
(ψx(u)− ψx(0)) = I(u)− I(u) +

∫ u

0

(1−G(y))ψx(u− y)dy −
∫ u

0

1−G(v + x)dv

=

∫ u

0

(1−G(y))ψx(u− y)dy −
∫ u

0

1−G(y + x)dy

which is the desired equation.



Week 5 - Cramér-Lundberg theory for
the renewal risk model

20 The Lundberg inequality in the renewal risk model

To prove the Lundberg inequality for the renewal risk model, we will extend the ideas from
the theory of martingales to this setting. Recall that the discrete sequence {Zi} given by
Zi = cτi − Yi is iid and that Sn = Z1 + · · · + Zn. As we have already seen, the processes
{M̃n} and {Mn} given by

M̃n = Sn − nµ, µ = E[Z1] <∞

and
Mn = eαSn−nΛ(α), Λ(α) = log E[eαZ1 ] <∞

are martingales. Now consider the random walk {Sn}. From the Strong Law of Large
Numbers it follows that

1

n
Sn → µ a.s.

and so if µ < 0, Sn → −∞ a.s. Hence if µ < 0 then ruin occurs with probability one. If
µ > 0 it follows from the previous discussion on ladder heights that ψ(u) < 1. Indeed, recall
that the probability that the first ladder height time is finite is strictly less than one in this
case (we shall see later in the lecture that this result still holds in this more general setting).
Once again µ = 0 is a difficult edge case. A theorem on random walks tells us that Sn will
cross zero infinitely often in this case and thus ψ(u) = 1 in this case also. We conclude that
we need µ > 0 to avoid ruin with probability one. Letting µτ = E[τ1] and µY = E[Y1], we
have

µ = E[Z1] = cµτ − µY > 0 ⇔ c >
µY
µτ

.

This leads to the following definition.

Definition 20.1 (Net profit condition in the renewal risk model). In the setup of
the renewal risk model, let µτ = E[τ1] and µY = E[Y1]. The assumption

c >
µY
µτ

is called the net profit condition.

Example 20.2. If the renewal process {Nt} is a Poisson process with intensity λ > 0, we
have µτ = 1/λ since the interarrival times are Exp(λ) distributed. Hence the NPC reads

c > λµY

38
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which coincides with the previous definition.

We are now ready to consider the Lundberg inequality. To do so, we need the adjustment
coefficient in the renewal risk model. Since we always assume the NPC, E[Z1] > 0 so if Λ(α)
exists, Λ′(0) > 0 and Λ is convex. We now compute Λ(α). Letting κ(α) = E[eαZ1 ], we have

κ(α) = E[eα(cτ1−Y1)] = E[eαcτ1 ]E[e−αY1 ] = κτ (αc)κY (−α).

We have Λ(−R) = 0 if and only if κ(−R) = 1 so

1 = κτ (−cR)κY (R)

is the equation for the adjustment coefficient in the renewal risk model. We let this be a
definition.

Definition 20.3. In the setup of the renewal risk model, the adjustment coefficient (if it
exists) is the number R > 0 which satisfies the equation

κτ (−cR)κY (R) = 1.

Example 20.4. Let the renewal process {Nt} be a Poisson process with intensity λ > 0.
Then the interarrival times are Exp(λ) distributed and so

κτ (α) =
λ

λ− α
.

Plugging this expression into the equation for the adjustment coefficient yields

1 =
λ

λ+ cR
κY (R) ⇔ λ+ cR = λκY (R) ⇔ cR− (κY (R)− 1)λ = 0

which is the same equation for the adjustment coefficient as seen earlier.

We have now presented all the notions and tools needed to derive the Lundberg inequality.

Theorem 20.5 (The Lundberg inequality in the renewal risk model). In the setup
of the renewal risk model, assume that the adjustment coefficient R > 0 exists. Then

ψ(u) ≤ e−Ru.

Proof. The proof very much resembles the one given earlier. Letting α = −R in the expo-
nential martingale, we get that the process

Mn = e−RSn

is a martingale. Now let T = inf{n ∈ N : Sn < −u} denote the time of ruin. Let
Tk = min{T, k}. Then Tk is a bounded stopping time for each k. Hence we can apply the
optional sampling theorem and obtain

E[MTk ] = M0 = 1.

We split the above mean into two cases:

E[MTk ] = E[MT 1{T≤k}] + E[Mk1{T>k}].
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The monotone convergence theorem gives

lim
k→∞

E[MT 1{T≤k}] = E[MT lim
k→∞

1{T≤k}] = E[MT 1{T<∞}].

We know that Mk ≥ 0 so taking limits on both sides of E[MTk ] = 1 gives

1 = E[MT 1{T<∞}] + E[Mk1{T>k}] ≥ E[MT 1{T<∞}] = E[e−RST 1{T<∞}]

≥ E[e−R(−u)1{T<∞}] = eRuP (T <∞) = eRuψ(u)

where in the second line we used that at the time T , the process Sn is less than −u.
Rearranging yields

ψ(u) ≤ e−Ru

as desired. �

21 The Cramér-Lundberg estimate in the renewal risk model

We now wish to establish the Cramér-Lundberg estimate in the renewal risk model. The
perturbation argument we did for the classical Cramér-Lundberg model no longer works
since it relied on the properties of a Poisson process. Instead we approach via ladder heights
of {Sn}.

Definition 21.1. Set T−0 = 0 and let

T−1 = inf{n ≥ 0 : Sn < 0} and T−i = inf{n ≥ T−i−1 : Sn < ST−i−1
} for i > 1.

These are called the negative ladder height times . We define the negative ladder heights to
be

Li = |ST−i − ST−i−1
|

and like before, these variables are defined conditional on the event that T−i−1 < ∞ and

τ−i <∞ where as before, τ−i = T−i − T
−
i−1.

Like before we need to define the ladder heights conditional on {T−i−1 < ∞, τ−i < ∞}.
Indeed, as discussed earlier, Sn drifts to infinity due to the NPC, so there is a positive
probability that we never observe the first negative ladder height. Note also that since {Nt}
is a renewal process and Sn is a sum of iid variables, at the time T−1 , the process essentially
restarts at −L1, i.e. the behaviour of the process after L1 is independent of the process up
to time T−1 . The same argument applies to later negative ladder height times.

The method needed to establish the Cramér-Lundberg estimate is essentially the same as
in the classical case. Recall that we constructed a renewal equation that ψ(u) satisfies by
making an exponential shift. Set

H(x) := P (L1 ≤ x, T−1 <∞).

H(x) is increasing and right-continuous but

H(∞) := lim
x→∞

H(x) = P (T−1 <∞) < 1



41

due to the NPC. Hence H(x) is not a proper distribution function (H is an example of a
defective distribution function ).

We can now make a perturbation argument. Observe that {Sn − ST−1
} for n > T−1 is

independent of {S1, ..., ST−1
}. The idea is to condition on (T−1 , L1). We have three cases:

(i) T−1 = ∞ i.e. we never observe any ladder heights. Thus Sn > 0 for all n and ruin
never occurs. Also, P (T−1 =∞) = 1− P (T−1 <∞) = 1−H(∞).

(ii) T−1 < ∞ and L1 = x ≤ u. Ruin does not occur and the ruin probability corresponds
to the ruin probability with initial capital u− x. Also (informally),

P (L1 ∈ [x, x+ dx), T−1 <∞) = dH(x).

(iii) T−1 <∞ and L1 = x > u. Ruin occurs and P (L1 > u, T−1 <∞) = H(∞)−H(u).

We now collect these observations and condition to obtain

ψ(u) = 0 · (1−H(∞)) +

∫ u

0

ψ(u− x)dH(x) + 1 · (H(∞)−H(u))

=

∫ u

0

ψ(u− x)dH(x) +H(∞)−H(u).

Note that this is already an integral equation. In the classical case we needed to do some
integral tricks to go from an integral differential equation to an integral equation. The
equation looks like a renewal equation but since H is not a proper distribution function, we
need a small modification. Multiply both sides by eαu to obtain

eαuψ(u) =

∫ u

0

eα(u−x)ψ(u− x)eαxdH(x) + eαu(H(∞)−H(u)).

We want eαxdH(x) to be a distribution function i.e. it should integrate to one. Such a
distribution is called exponentially shifted . Based on earlier calculations, we expect α = R
to be the solution to this problem. This turns out to be true but the calculations are more
subtle since the known function is a lot less explicit than in the classical case. Let HR

denote the function with dHR = eRxdH(x).

Lemma 21.2. HR is a distribution function.

Proof. Trivially, HR(x)→ 0 for x→ −∞. HR is right-continuous and non-decreasing since
H is. It only remains to show that HR(x)→ 1 for x→∞ i.e.∫ ∞

0

dHR(x) = 1.

We compute∫ ∞
0

dHR(x) =

∫ ∞
0

eRxdH(x) =

∫ ∞
0

eRxP (T−1 <∞)dP (L1 ≤ x | T−1 <∞)

= P (T−1 <∞)

∫ ∞
0

eRxdP (L1 ≤ x | T−1 <∞) = P (T−1 <∞)E[eRL1 | T−1 <∞]

= E
[
e
−RS

T
−
1 1{T−1 <∞}

]
.
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To continue the computation, we apply martingale methods. Recall that the process

Mn = eαSn−nΛ(α)

is a martingale for any α. Choosing α = −R, we obtain the martingale

Mn = e−RSn .

Define the sequence of bounded stopping times Jk = T−1 ∧k. We apply the optional sampling
theorem and get

1 = M0 = E[MJk ] = E[MT−1
1{T−1 ≤k}

] + E[Mk1{T−1 >k}
].

We consider each term on the right hand side. The integrand of the first term is increasing
so by the monotone convergence theorem,

lim
k→∞

E[MT−1
1{T−1 ≤k}

] = E[MT−1
lim
k→∞

1{T−1 ≤k}
] = E[MT−1

1{T−1 <∞}
] = E

[
e
−RS

T
−
1 1{T−1 <∞}

]
.

For the other term, note that if T−1 > k, Sk ≥ 0 so the second term is bounded by 1. Using
the dominated convergence theorem,

lim
k→∞

E
[
Mk1{T−1 >k}

]
= E

[
lim
k→∞

Mk1{T−1 >k}

]
= E[0] = 0.

We conclude that

E
[
e
−RS

T
−
1 1{T−1 <∞}

]
= 1

and this completes the proof.
�

We have thus established a proper renewal equation

ZR(u) = zR(u) +

∫ u

0

ZR(u− x)dHR(x)

with ZR(u) = eαuψ(u) and zR(u) = eRu(H(∞)−H(u)). To establish the Cramér-Lundberg
estimate, we need the following lemma.

Lemma 21.3. zR is directly Riemann integrable (given the proper technical conditions).

We now have all the tools we need to prove the Cramér-Lundberg estimate.

Theorem 21.4 (The Cramér-Lundberg estimate for the renewal risk model). In
the context of the renewal risk model, assume Λ(−R) = 0 for some R > 0 and Λ′(−R) <∞
and that H is non-arithmetic. Then

ψ(u) ∼ Ce−Ru for u→∞

where

C =
1

µR

∫ ∞
0

zR(x)dx, µR =

∫ ∞
0

xdHR(x).
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Proof. One can show that µR < ∞ if Λ′(−R) < ∞. As zR is directly Riemann integrable,
the second form of the renewal theorem (Theorem 9.8) yields

ZR(u)→ C =
1

µR

∫ ∞
0

zR(x)dx for u→∞, µR =

∫ ∞
0

xdHR(x),

and this implies
ψ(u)

Ce−Ru
→ 1 for u→∞

which establishes the theorem. �

In the exercises, we gave a very explicit expression for the constant C in the classical
setting. In this more general setting we cannot provide an explicit expression, but C can be
simplified. The following proposition provides one such simpler expression.

Proposition 21.5. With the assumptions of the Cramér-Lundberg estimate above, we have

C =
1− P (T−1 <∞)

µRR
.

Proof. The proof is a straightforward computation:

C =
1

µR

∫ ∞
0

zR(x)dx =
1

µR

∫ ∞
0

eRx(H(∞)−H(x))dx =
1

µR

∫ ∞
0

eRx
∫ ∞
x

dH(y)dx

=
1

µR

∫ ∞
0

∫ y

0

eRxdxdH(y) =
1

µR

∫ ∞
0

[
1

R
eRx
]y

0

dH(y) =
1

µRR

∫ ∞
0

(eRy − 1)dH(y)

=
1

µRR

(∫ ∞
0

eRydH(y)−
∫ ∞

0

dH(y)

)
=

1

µRR
(1− (H(∞)−H(0)))

=
1−H(∞)

µRR
=

1− P (T−1 <∞)

µRR
.

�

22 Simulating the Cramér-Lundberg process

In this section we discuss some aspects of estimating the probability of ruin via simulation.
We wish to simulate

Ct = u+ ct−
Nt∑
i=1

Yi

where {Nt} is a renewal process. It is a difficult task to simulate a continuous time process
in general, but a Cramér-Lundberg process can be simulated simply by generating {(τi, Yi) :
i = 1, 2, ...} and this is easily done in many computer packages such as R. From the random
walk representation we have ψ(u) = P (Sn < u for some n). A natural way to estimate ψ(u)
is thus to generate a large number of processes {Sn} and compute the fraction of times that
ruin happens. There are however two issues with this approach:

(i) Since ψ(u) < 1 there is a positive probability that a simulation of a process {Sn} never
terminates.
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(ii) Since ψ(u) is usually small, the error is often larger than the estimate of ψ(u) itself.

Let us consider these issues in more detail. Let Tu = inf{n ≥ 1 : Sn < −u} denote the time
of ruin. We want to estimate the ruin probability

pu := P (Tu <∞) = E[W ]

for W := 1{Tu<∞}. We can estimate pu by simulating an iid sequence {Wi : i = 1, ..., N}
with Wi ∼W and compute the empirical mean ŴN . By the Strong Law of Large Numbers,

pu ≈ ŴN :=
1

N

N∑
i=1

Wi.

Note that ŴN is the proportion of simulations of {Sn} where ruin occurs. We are interested

in providing an error estimate for ŴN . By the Central Limit Theorem, asymptotically we
have

ŴN ∼ N
(
pu,

σ2
u

N

)
, σ2

u = Var(W )

so

ŴN − pu ≈
σu√
N
Z where Z ∼ N (0, 1).

We can now compute (asymptotic) confidence intervals. Let zα/2 denote the α/2-quantile
for the N (0, 1) distribution i.e. zα/2 is the real number such that P (Z > zα/2) = α/2. Then(

ŴN −
σu√
N
zα/2, ŴN +

σu√
N
zα/2

)
is an asymptotic confidence interval for pu with a coverage of 1 − α. We now consider the
variance σ2

u of W . We have

σ2
u = Var(W ) = E[12

{Tu<∞}]−E[1{Tu<∞}]
2 = pu − p2

u = pu(1− pu).

We can now define the relative error RE to be

RE :=
zα/2√
N

σu
pu
.

We can now describe issue (ii) more formally. Indeed,

σu
pu

=

√
pu − p2

u

pu
=

1
√
pu

√
1− pu

and pu → 0 for u→∞ so σu/pu →∞ for u→∞. This means that the error of the estimate
will get larger and larger as u gets larger. The error will thus dominate the estimate,
effectively rendering the estimate useless. Thus, when estimating the ruin probability, we
want the relative error to be bounded. We end this lecture with an example of a method
which has this property.
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Estimating the ruin probability

It turns out that replacing the distribution of Zi with an exponentially shifted version solves
both of the above discussed issues. We here present the general ideas and leave the proofs
as exercises. Suppose Zi has distribution function F and consider the exponential shift

dFα(x) =
eαx

κ(α)
dF (x)

with κ(α) = E[eαZ1 ]. This is a distribution function (exercise) and choosing α = −R
turns out to be a good choice. If E−R denotes expectation under the shifted measure with
α = −R, one can show that E−R[Z1] < 0 so that {Sn} goes below −u with probability one
under this measure. Moreover, one can show that

ψ(u) = E−R[eRSTu1{Tu<∞}]

where Tu = inf{n ≥ 1 : Sn < −u} denotes the time of ruin. To summarise: The method
works by first determining the shifted distribution F−R. Second, simulate many {Sn} with
Sn = Z1 + · · · + Zn, Zi ∼ F−R (not F !) and compute the empirical mean of eRSTu . This
yields an unbiased estimator of the ruin probability. Furthermore, it can be shown that the
relative error is bounded for this method. In the exercises, we will apply this method to the
case of exponential claims and compare to the theoretical expression for ψ(u).



Week 6 - Ruin with stochastic
investments and stochastic fixed point
equations

See Jeffrey’s note.
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Week 7 - Claims reserving

23 Claims reserving

The material for this week is based on the notes by Jostein Paulsen, [5].

Up to now, all claims have been paid out immediately. In this final week, we will take a
different (and more realistic) approach. In reality, claims are often reported and then settled
at a later date. In some cases it can take years before a claim is paid to the policy-holder.
Claims reserving can handle these cases. The goal is to model future payments for existing
claims. We assume that over the time interval [0, J ], all claims will be settled. We take a
simple approach and assume that time is discrete and counted in whole years. Let us fix
the following notation.

Definition 23.1. We let Xij denote the claims losses from year i paid j years after year i.
We let

Cij =

j∑
i=0

Xij

denote the accumulated losses in year i and paid in years {0, 1, ..., j}.

Note also that we, in contrast to earlier, only work with sums of claims. Previously we
worked with one claim at a time, while we now consider the total sum of claims in a given
year. It is useful to present the data in a runoff triangle (taken from [5]):
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As the figure indicates, the years where the accident takes place (indexed by i) are called
accident years while the years where the claims are settled are called the development years
or runoff years . We consider I total accident years, i.e. I is the current year. The longer
we go back in time, the more information we have available. In year I, we only know the
settlements for this year corresponding to XI0. If we go one year back in time, we know
both XI−1,0 and XI−1,1 and so on. Hence we have an upper triangle of information which
is known and a lower triangle of information which is unknown. The goal is to predict the
values in this lower triangle. Let us turn these observations into mathematics.

Definition 23.2. Define

D = σ({Xij : i+ j ≤ I, j ≤ J}), Ek = σ({Xij : i ≤ I, j ≤ k}).

We set D ∨ Ek = σ(D ∪ Ek). We also let

CT =

I∑
i=0

J∑
j=0

Xij

denote the total claims in the runoff triangle.

One should think of D as all the information available at time I i.e. the present time. This
follows because all the information currently available is the information generated by the
observations Xi0, ...Xi,I−i i.e. the upper half of the triangle. One should think of Ek as all
information generated by the observations up to runoff year k. Note that D and Ek contain
different information in general. D ∨ Ek is the combined information in D and Ek.

24 The chain ladder method

In order to make predictions, we need some assumptions on our data. The following two
assumptions are standard.

(CL1): Cij and Ci′j′ are independent for i 6= i′ i.e. observations from different accident years
are independent.

(CL2): There exist factors (constants) f0, ..., fJ−1 called development factors such that

E[Ci,j+1 | Ej ] = fjCij for j = 0, ..., J − 1, i = 0, ..., I.

Under these two assumptions, it is possible to compute the expected value of future accu-
mulated claims given the information available. Intuitively, we should start with Ci,I−i and
multiply with all the development factors fI−i, ..., fJ−1. The following lemma confirms this
intuition.

Lemma 24.1. Under assumptions (CL1) and (CL2), the expected accumulated claims in
year i is given by

E[CiJ | D ] = Ci,I−i

J−1∏
j=I−i

fj .
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Proof. In the i’th accident year, Ci,I−i is known and so

E[Ci,I−i+1 | D ] = E[E[Ci,I−i+1 | D ∨ Ek] | D ] = E[E[Ci,I−i+1 | Ek] | D ]

= E[fI−iCi,I−i | D ] = fI−iCi,I−i.

The first equality follows from the tower property. The second equality is a consequence
of (CL1) since we can remove all information from observations not in year i. The third
equality follows from (CL2). More generally, using the same calculations,

E[Cij | D ] = fj−1E[Ci,j−1 | D ].

Iterating all the way from J to I − i, we obtain the desired formula. �

The lemma leads to the following definition.

Definition 24.2. We define the chain ladder estimate to be

CCL
iJ = Ci,I−i

J−1∏
j=I−i

fj .

The chain ladder estimate is exactly the expected losses for accident year i. To say something
about the variance, we need another assumption.

(CL3): There exist constants σ2
0 , ..., σ

2
J−1 such that

Var(Ci,j+1 | Ej) = σ2
jCij .

In order to do computations with the variance, the following lemma will be useful.

Lemma 24.3 (Conditional variance formula). Let Y be a random variable and F ⊆ G
σ-algebras. Then

Var(Y | F ) = E[Var(Y | G ) | F ] + Var(E[Y | G ] | F ).

Proof. We have

Var(Y | G ) = E[Y 2 | G ]−E[Y | G ]2

so by the tower property,

E[Var(Y | G ) | F ] = E[Y 2 | F ]−E[E[Y | G ]2 | F ].

Note that

E[E[Y | G ] | F ] = E[Y | F ],

and we may conclude

Var(Y | G ) = E[Y 2 | G ]−E[Y | F ]2 + (E[E[Y | G ] | F ])2 −E[Y | G ]2

= Var(Y | F )−Var(E[Y | G ] | F ).

�
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Remark 24.4. Note the similarity to the following well-known result from probability theory

Var(Y ) = E[Var(Y | F )] + Var(E[Y | F ])

sometimes called the law of iterated variance. This result is an easy consequence of the
result above. Indeed, simply let F be trivial in the lemma.

Definition 24.5. We let
gij = Var(Cij | D).

The following proposition allows us to compute gij .

Proposition 24.6. Under the assumptions (CL1), (CL2) and (CL3), we have an iterative
formula for gij, namely

gij = σ2
j−1Ci,I−i

j−2∏
k=I−i

fk + f2
j−1gi,j−1 = σ2

j−1C
CL
i,j−1 + f2

j−1gi,j−1,

and we have

giJ = (CCL
iJ )2

J−1∑
j=I−i

σ2
j

f2
j C

CL
ij

.

Proof. We apply the conditional variance formula and obtain

gij = E[Var(Cij | Ej−1 ∨D) | D ] + Var(E[Cij | Ej−1 ∨D ] | D).

Using the three assumptions, the first term becomes

E[Var(Cij | Ej−1 ∨D) | D ] = E[Var(Cij | Ej−1) | D ] = E[σ2
j−1Ci,j−1 | D ]

= σ2
j−1E[Ci,j−1 | D ] = σ2

j−1Ci,I−i

j−2∏
k=I−i

fk.

The second term becomes

Var(E[Cij | Ej−1 ∨D ] | D) = Var(E[Cij | Ej−1] | D) = Var(fj−1Ci,j−1) = f2
j−1gi,j−1.

Combining these results we get the first formula. To show the second formula, note that
gi,I−i = Var(Ci,I−i | D) = 0 since Ci,I−i is already known. We can now compute

giJ = σ2
J−1C

CL
i,J−1 + f2

J−1gi,J−1 = σ2
J−1C

CL
i,J−1 + f2

J−1(σ2
J−2C

CL
i,J−2 + f2

J−2gi,J−2)

= σ2
J−1C

CL
i,J−1 + f2

J−1σ
2
J−2C

CL
i,J−2 + f2

J−2f
2
J−1gi,J−2

= ...

=

J−1∑
k=I−i

 J−1∏
j=k+1

f2
j

σ2
kC

CL
ik =

J−1∑
k=I−i

J−1∏
j=k

fj

 σ2
k

f2
k

CCL
ik

=

J−1∑
k=I−i

(
CCL
iJ

CCL
ik

)2
σ2
k

f2
k

CCl
ik = (CCL

iJ )2
J−1∑
k=I−i

σ2
k

f2
kC

CL
ik

.

�
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We are now ready to estimate the fj . To do so, first consider the ratio of claims in year i
from development year j to j + 1,

Fij =
Ci,j+1

Cij
for i ≤ I − j − 1.

The condition on i follows from the fact that the accumulated claims Cij are known for
i+ j ≤ I. Note that

E[Fij | Ej ] =
1

Cij
E[Ci,j+1 | Ej ] =

1

Cij
fjCij = fj .

This observation leads to considering an estimator of the form

f̂j =

I−j−1∑
i=0

aiFij , where

I−j−1∑
i=0

ai = 1.

The restriction on the ai’s makes f̂j an unbiased estimator i.e. E[f̂j ] = fj . We wish to

choose the ai such that Var(f̂j | Ej) is minimized. The following result provides the optimal
weights ai.

Proposition 24.7. In the setup above and under assumptions (CL1), (CL2) and (CL3),

the choice of ai that minimizes Var(f̂j | Ej) is given by

a∗i =
Cij
C•,j

, C•,j =

I−j−1∑
i=0

Cij .

Proof. Let a = (a0, ..., aI−j−1) and define the function

h(a) = Var(f̂j | Ej).

We want to minimize h(a) given the constraint

q(a) =

I−j−1∑
i=0

ai = 1.

To solve this problem we use Lagrange multipliers which tells us that a minimizer a∗ satisfies

∇h(a∗) = λ∇q(a∗)

for a real number λ. We compute using assumptions (CL1) and (CL3)

h(a) = Var

(
I−j−1∑
i=0

aiFij

)
=

I−j−1∑
i=0

a2
iVar(Fij | Ej) =

I−j−1∑
i=0

a2
i

C2
ij

Var(Ci,j+1 | Ej)

=

I−j−1∑
i=0

a2
i

C2
ij

σ2
jCij =

I−j−1∑
i=0

a2
i

σ2
j

Cij
.

Therefore,
∂

∂ai
h(a) = 2ai

σ2
j

Cij
and

∂

∂ai
q(a) = 1.
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The Lagrange multiplier equation thus becomes

2a∗i
σ2
j

Cij
= λ, i = 0, ..., I − j − 1

i.e.

a∗i =
λCij
2σ2

j

.

We can use our constraint to solve for λ as follows

1 =

I−j−1∑
i=0

a∗i =

I−j−1∑
i=0

λCij
2σ2

j

=
λ

2σ2
j

I−j−1∑
i=0

Cij =
λ

2σ2
j

C•,j .

This yields

λ =
2σ2

j

C•,j

and therefore

2a∗i
σ2
j

Cij
=

2σ2
j

C•,j
.

Rearranging completes the proof. �

Remark 24.8. The notes by Jostein Paulsen [5] has an alternative proof that does not rely
on Lagrange multipliers, see page 9.

Remark 24.9. Using the law of total variance, we have

Var(f̂j) = E[Var(f̂j | Ej)] + Var(E[f̂j | Ej ]) = E[Var(f̂j | Ej)] + Var(fj) = E[Var(f̂j | Ej)],

so minimizing Var(f̂j | Ej) is equivalent to minimizing the unconditional variance Var(f̂j).

Plugging the optimal weights into the estimator f̂j gives the chain ladder estimators of fj .

Definition 24.10. The chain ladder estimators of the development factors are given by

f̂CL
j =

I−j−1∑
i=0

Ci,j+1

C•,j
=

∑I−j−1
i=0 Ci,j+1∑I−j−1
i=0 Cij

,

and we define the chain ladder estimate of the accumulated losses in accident year i as

ĈCL
iJ = Ci,I−i

J−1∏
j=I−i

f̂j .

25 Final comments

There are two aspects that we will briefly discuss, namely the question of estimating the
mean squared error for the total losses estimate and parametric methods.
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The mean squared error

We have an estimate for the total claims losses, namely

ĈT =

I∑
i=0

ĈCL
iJ .

The mean squared error given D is given by

MSE(ĈT | D) = E[(CT − ĈT )2 | D ] = E[C2
T | D ]− 2ĈTE[CT | D ] + Ĉ2

T

= (E[C2
T | D ]−E[CT | D ]2) + Ĉ2

T − 2ĈTE[CT | D ] + E[CT | D ]2

= Var(CT | D) + (E[CT | D ]− ĈT )2

where we used that ĈT is a function of the observations in D . This equation is a variation
of the famous bias-variance tradeoff. We already have the tools to compute the first term,
and one can compute the empirical estimates of the σ2

j to compute Var(CT | D) in practice.
The other term is a lot more complicated. One can show

(E[CT | D ]− ĈT )2 =

 I∑
i=I−J+1

Ci,I−i

 J−1∏
j=I−i

fj −
J−1∏
j=I−i

f̂j

2

,

and the problem with this expression is that it depends on both fj and f̂j . Futhermore, the

natural idea of replacing fj with f̂j just makes the term vanish. One way to remedy this
issue was proposed by Mack. The idea is to condition on Ej in a clever way. See page 11 of
[5] for the details.

Parametric methods

So far we have taken a nonparametric approach to chain ladder estimation i.e. to estimate
fj , we have not assumed a distribution on the claims. A parametric approach is to assume

Ci,j+1 | Ej ∼ Hj

for some distribution Hj . An example could be

Ci,j+1 ∼ N (Cijfj , Cijσ
2
j ).

The parameters in the model are then determined using maximum likelihood methods. For
an introduction to this subject, see section 1.2.2 in [5].
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renewal equation, 12
renewal function, 12
renewal risk model, 36
Renewal theorem

first form, 13
second form, 15

runoff triangle, 47
runoff year, 48

sample path, 2
severity of ruin, 32
slowly varying function, 24
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Sparre Andersen model, 36
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subexponential distribution, 24
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