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1 Introduction

The aim of this paper is to give a thourough introduction to the Eisenstein inte-
gers. We will discuss how basic arithmetic works for these integers and we shall
see that they share many of the properties of ordinary integers such as the exis-
tence of a Euclidean algorithm and unique factorization into prime elements. To-
wards the end, we will briefly touch upon some more advanced topics. We use Z =
{...,−2,−1, 0, 1, 2, ...} to denote the integers, N = {1, 2, ...} to denote the positive in-
tegers (without zero) and N0 = {0, 1, 2, ...} to denote the non-negative integers. The
focus of the text is almost purely mathematical, but some of the procedures in the
proofs are also implemented as algorithms. If the reader is interested in the com-
putational aspects, they are encouraged to implement these algorithms in their fa-
vorite programming language. Code for these algorithms in C++ are available here:
https://github.com/RasmusFL/EisensteinIntegers.

The prerequisites for reading the paper is a basic understanding of the integers.
This includes some experience with modular arithmetic, primes and the Euclidean
algorithm. For the more advanced topics, references are included.

1.1 Basic arithmetic

Let us first and foremost define the main object of interest.

Definition 1.1. Let ω = e
2πi
3 . The set Z[ω] = {a + bω | a, b ∈ Z} is called the set of

Eisenstein integers.

We note that Z[ω] is a subset of the complex numbers C. We can thus do arithmetic
as we usually do with the complex numbers. Explicitly, let α = a+ bω and β = c+ dω
denote two Eisenstein integers. Then

α+ β = a+ bω + c+ dω = (a+ c) + (b+ d)ω

α · β = (a+ bω)(c+ dω) = ac+ adω + bcω + bdω2

= (ac− bd) + (ad+ bc− bd)ω

where we have used that ω is a root of the polynomial x2 +x+ 1. The above identities
show that Z[ω] is closed under addition and multiplication.

1.2 The norm and the conjugate

Definition 1.2. We define the norm N on Z[ω] as the map N : Z[ω] → N0 given by
N(a+ bω) = a2 − ab+ b2.

For example, N(1−ω) = 12−1 · (−1)+(−1)2 = 3 and N(3+2ω) = 32−3 ·2+22 =
9−6 + 4 = 7. We use this norm instead of the ordinary complex norm | · | since N only
attains integer values. This will be very useful later on. Let us start by convincing
ourselves that the norm always gives non-negative values.

Proposition 1.3. For any α ∈ Z[ω], we have N(α) ≥ 0. Furthermore, N(α) = 0 if
and only if α = 0.

Proof. Let α = a+ bω. Then

N(α) = a2 − ab+ b2 =
(
a b

)( 1 − 1
2

− 1
2 1

)(
a
b

)
,
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so the norm is a quadratic form. The matrix(
1 − 1

2
− 1

2 1

)
has the eigenvalues 3/2 and 1/2 and hence it is positive definite. The claim follows. �

There are two essential properties of the norm. The first is that the norm only
takes non-negative integer values. The other is the property of multiplicativity.

Proposition 1.4. The norm N is multiplicative i.e. for α, β ∈ Z[ω] we have N(αβ) =
N(α)N(β).

Proof. Write α = a+ bω and β = c+ dω. We compute

N(αβ) = N((ac− bd) + (ad+ bc− bd)ω)

= (ac− bd)2 − (ac− bd)(ad+ bc− bd) + (ad+ bc− bd)2

= a2c2 + b2d2 − 2abcd− (a2cd+ abc2 − abcd− abd2 − b2cd+ b2d2)

+ (a2d2 + 2abcd− 2abd2 + b2c2 − 2b2cd+ b2d2)

= a2c2 − a2cd+ a2d2 − abc2 + abcd− abd2 + b2c2 − b2cd+ b2d2

and

N(α)N(β) = (a2 − ab+ b2)(c2 − cd+ d2)

= a2c2 − a2cd+ a2d2 − abc2 + abcd− abd2 + b2c2 − b2cd+ b2d2.

We see that the two expressions coincide. �

In the integers Z, only two elements are invertible with respect to multiplication,
namely 1 and −1. We call such elements units.

Definition 1.5. An element α ∈ Z[ω] is a unit if there exists some other element
β ∈ Z[ω] such that αβ = 1. We call β the multiplicative inverse or simply the inverse
of α, and we write α−1 for β.

It is meaningful to say ”the” inverse since an inverse is unique. See the exercises for
details. To determine the units for the Eisenstein integers, we will apply the following
useful result.

Lemma 1.6. α ∈ Z[ω] is a unit if and only if N(α) = 1.

Proof. Assume that α is a unit and let β denote the inverse of α. Using Proposition
1.4, we obtain 1 = N(1) = N(αβ) = N(α)N(β). We know that the norm only takes
non-negative integer values and hence we have N(α) = N(β) = 1. Conversely, assume
α is an element of norm 1. Write α = a+ bω. Let β = a− b− bω. We then have

αβ = (a+ bω)(a− b− bω) = a2 − ab− abω + abω − b2ω − b2ω2

= a2 − ab− b2ω − b2(−ω − 1) = a2 − ab+ b2 − b2ω + b2ω = 1

as desired. �

The choice of β in the proof above may seem arbitrary, but it turns out to be a
natural guess for an inverse (when it exists). Recall that for a complex number a+ bi
(a, b ∈ R), the conjugate is given by

a+ bi = a− bi.

The following result captures the connection between the norm and the conjugate.
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Proposition 1.7. Let α = a+ bω ∈ Z[ω].

(1) We have α = (a− b)− bω.

(2) N(α) = αα.

(3) If α is invertible, then the inverse is given by α.

Proof. See the exercises. �

Let us return to the task of determining all units in Z[ω].

Proposition 1.8. Z[ω] has six units, namely ±1,±ω and ±(1 + ω).

Proof. Using the lemma from before, we have to solve the equation a2 − ab + b2 = 1
when a and b are integers. We do so using the following clever tricks:

a2 − ab+ b2 = 1 ⇔ 4a2 − 4ab+ 4b2 = 4 ⇔ (2a− b)2 + 3b2 = 4.

We now see that b ∈ {±1}. In any case, we must have 2a− b ∈ {±1} as well. It follows
that all solutions are exactly as stated in the proposition. �

Before moving on to divisibility, we introduce a concept which will become impor-
tant later.

Definition 1.9. Two elements α and β in Z[ω] are called associates if they only differ
by a unit i.e. there is a unit u in Z[ω] such that α = uβ.

It is clear that associated elements have the same norm.

1.3 Divisibility in Z[ω]
Divisibility in Z[ω] is completely analogous to division in Z.

Definition 1.10. Let α, β ∈ Z[ω]. We say that β divides α (or that β is a factor of
α) if there exists some γ ∈ Z[ω] such that α = βγ. In this case, we write β | α.

Example 1.11. Let α = −2 + 6ω and β = 3 + 4ω. We investigate whether β divides
α. To do so, we use the usual strategy of division in the complex numbers.

α

β
=
αβ

ββ
=

(−2 + 6ω)(3− 4− 4ω)

32 − 3 · 4 + 42
=

(−2 + 6ω)(−1− 4ω)

13

=
(−2)(−1)− (6(−4)) + ((−2)(−4) + 6(−1)− 6(−4))

13

=
26 + 26ω

13
= 2 + 2ω ∈ Z[ω].

We conclude that β does indeed divide α.

Using the multiplicativity of the norm, it is often easier to decide whether an element
divides another in Z[ω].

Proposition 1.12. Assume β | α in Z[ω]. Then N(β) | N(α).

Proof. By definition, α = βγ for some γ ∈ Z[ω]. Proposition 1.4 then yields N(α) =
N(β)N(γ), proving the claim. �

Example 1.13. Does β = 1 + 3ω divide α = −2 + 6ω. We compute N(β) = 7 and
N(α) = 52. Since 7 does not divide 52, β does not divide α.
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As we shall see later, the element 1 − ω plays a special role. It has norm 3 and it
turns out that every element with norm divisible by 3 has 1− ω as a factor.

Proposition 1.14. Let α ∈ Z[ω]. Then α has 1−ω as a factor if and only if N(α) is
divisible by 3.

Proof. If 1−ω is a factor of α, then N(1−ω) = 3 divides N(α) by the above proposition.
Conversely, suppose 3 divides N(α). If α = a+ bω, the goal is to determine c and d in
Z such that

a+ bω = (1− ω)(c+ dω).

The right hand side can be expanded as

(1− ω)(c+ dω) = (c+ d) + (2d− c)ω

and thus we need to solve the system of linear equations

a = c+ d

b = 2d− c.

Solving this system yields the real solution

c =
2a− b

3
, d = a− 2a− b

3
.

Hence we are done once we prove that 3 divides 2a− b. We have N(α) = a2 − ab+ b2

and hence
4N(α) = (2a)2 − 2 · 2ab+ b2 + 3b3 = (2a− b)2 + 3b2.

By assumption, 3 divides the left hand side. It follows that 3 divides (2a − b)2. As 3
is prime, 3 also divides 2a− b as desired. �

1.4 Exercises

Exercise 1.4.1:
Let α = 3− 5ω and β = −7 + 2ω. Compute α+ β, α− β, αβ, N(α) and N(β).

Exercise 1.4.2:
Show that ω is a root of the polynomial x2 + x+ 1 and use this to verify the identity

(a+ bω)(c+ dω) = (ac− bd) + (ad+ bc− bd)ω.

Exercise 1.4.3:
Let α ∈ Z[ω] be a unit. Prove directly from the definition of a unit that the inverse

of α is unique.

Exercise 1.4.4:
Prove Proposition 1.7.

Exercise 1.4.5:
Provide an alternative proof of Proposition 1.4 using Proposition 1.7.

Exercise 1.4.6:
Prove that the relation on Z[ω] given by α ∼ β if and only if α and β are associates

is an equivalence relation. Describe the equivalence classes [2 + 3ω], [4ω] and [1− ω].
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Exercise 1.4.7:
Let α = 2 + 5ω. Determine whether α divides the following elements:

1)17 + 14ω.

2)4 + 7ω.

3)9 + 5ω.

4)1− 7ω.

2 The Euclidean algorithm and Bezout’s theorem

2.1 Euclidean division in Z[ω]
Let us briefly recall Euclidean division in Z.

Proposition 2.1. Euclidean division in Z Let a and b be integers with b 6= 0. There
exists unique integers q and r satisfying a = bq + r such that 0 ≤ r < |b|. We call q
the quotient and r the remainder.

Example 2.2. Let a = 46 and b = 13. 13 divides 46 3 times with a remainder of 7.
Thus, 46 = 13 · 3 + 7. The above proposition says that there is no other choice if we
want the remainder to be non-negative. However, there is nothing stopping us from
instead writing 46 = 13 · 4 − 6, and we note that | − 6| < |7|. In a sense, choosing
−6 instead of 7 as the remainder is a more optimal choice. The price is the loss of
uniqueness of the remainder.

The idea in the above example will be used to do Euclidean division in Z[ω]. We
will use a modified Euclidean algorithm in the following. The algorithm is described
in the following result.

Proposition 2.3 (Modified Euclidean division in Z). Let a and b be integers with
b 6= 0. There exists integers q and r satisfying a = bq + r and such that |r| ≤ (1/2)|b|.
Proof. Partition the real number line into half-open intervals of the form [bq, b(q + 1))
for q ∈ Z. a is in exactly one of these intervals, say [bq′, b(q′ + 1)). Now choose either
q′ or q′ + 1 according to which one of bq′ or b(q′ + 1) is closest to a. This provides us
with a q such that |a− bq| ≤ (1/2)|b|. Let r = a− bq for this q. �

We are now ready to study Euclidean division in Z[ω]. Let us first, however, do an
example.

Example 2.4. We wish to do division with remainder with α = 13 − 4ω and β =
−1 + 4ω. The quotient is

α

β
=

αβ

N(β)
=

(13− 4ω)(−5− 4ω)

21
= −81

21
− 48

21
ω.

−81/21 ≈ −3.857 and −48/21 ≈ −2.286. If we just carelessly choose the quotient
γ = −3− 3ω, we get a remainder ρ of

ρ = α− βγ = 13− 4ω − (−1 + 4ω)(−3− 3ω) = −2− 7ω

which has norm 39 > 21 = N(β). However, if we choose γ = −4 − 2ω instead (the
integers closest to the above fractions using the modified Euclidean algorithm), we
obtain the remainder

ρ = α− βγ = 13− 4ω − (−1 + 4ω)(−4− 2ω) = 1 + 2ω

which has norm 3. A much better choice.
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The above example tells us how to do Euclidean division in Z[ω].

Theorem 2.5 (Euclidean division in Z[ω]). Let α, β ∈ Z[ω] with β 6= 0. There exist
γ, ρ ∈ Z[ω] with α = βγ + ρ such that N(ρ) < N(β). γ is referred to as the quotient
and ρ as the remainder.

Proof. Write αβ = a+ bω. Then

α

β
=

αβ

N(β)
=

a

N(β)
+

b

N(β)
ω.

Apply the modified Euclidean algorithm on the pairs (a, N(β)) and (b, N(β)). This
will provide us with q1, q2, r1, r2 such that a = N(β)q1 + r1, b = N(β)q2 + r2 and
|r1|, |r2| ≤ (1/2)N(β).

α

β
=
N(β)q1 + r1 + (N(β)q2 + r1)ω

N(β)
= q1 + q2ω +

r1 + r2ω

N(β)
.

Define γ = q1 + q2ω. The equation above becomes

α

β
= γ +

r1 + r2ω

N(β)

which can be rewritten as

α− βγ =
r1 + r2ω

β
.

With ρ = α − βγ, we claim that N(ρ) < N(β). In the following, we use the fact that
the norm N can also be applied on a+bω for any a, b ∈ R with all properties preserved
(except that it no longer needs to take on integer values). Consider the computation:

N(ρ) = N

(
r1 + r2ω

β

)
= N

(
r1

N(β)
+

r2
N(β)

ω

)
N(β)

=

(
r21

N(β)2
− r1r2
N(β)2

+
r22

N(β)2

)
N(β)

≤
(

(N(β)/2)2

N(β)2
+
|r1||r2|
N(β)2

+
(N(β)/2)2

N(β)2

)
N(β)

≤
(

1

4
+

1

4
+

1

4

)
N(β) =

3

4
N(β) < N(β).

This bound completes the proof. �

Remark 2.6. Note that we actually proved something slightly stronger, namely that
the remainder ρ can be choosen such that N(ρ) ≤ (3/4)N(β).

Example 2.7. Let α = −11 + 4ω and β = 5 + 7ω. We have N(β) = 39 and thus

α

β
=

αβ

N(β)
=

(−11 + 4ω)(−2− 7ω)

39
=

50

39
+

97

39
ω.

50/39 ≈ 1.282 which we round down to 1. 97/39 ≈ 2.487 which we round down to 2.
Hence our choice for the quotient is γ = 1 + 2ω. For the remainder, we get

ρ = α− βγ = −2 + ω.

N(ρ) = 7 < 39 = N(β) as desired.
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2.2 Greatest common divisors and the Euclidean algorithm

Greatest common divisors work very much in the same way in Z[ω] as in the ordinary
integers.

Definition 2.8. Let α, β ∈ Z[ω] with at least one of α and β not equal to zero. A
greatest common divisor of α and β is an element of Z[ω] which divides both α and
β and has maximal norm. We will sometimes write gcd(α, β) for a greatest common
divisor of α and β.

Remark 2.9. If δ is a greatest common divisor of α and β, so are any of the associates
of δ. Hence a greatest common divisor is never unique.

We now introduce the Euclidean algorithm for the Eisenstein integers. It works in
exactly the same way as for the integers.

Theorem 2.10 (Euclidean algorithm for Eisenstein integers). Let α, β ∈ Z[ω]
be non-zero. Applying Euclidean division in the following fashion

α = βγ1 + ρ1, N(ρ1) < N(β)

β = ρ1γ2 + ρ2, N(ρ2) < N(ρ1)

ρ1 = ρ2γ3 + ρ3, N(ρ3) < N(ρ2)

...

will after finitely many steps result in a division with a remainder of zero. The last
non-zero remainder is a greatest common divisor of α and β.

Proof. To see that the algorithm terminates, note that all norms are non-negative and
attain integer values. As the sequence of norms (N(ρi)) is strictly decreasing, the
algorithm has to terminate after finitely many steps. Now consider the first equation
α = βγ1 + ρ1. By rewriting as ρ = α− βγ1, we see that a common divisor of α and β
is also a common divisor of β and ρ1. Repeating the argument, this element is also a
common divisor of ρ1 and ρ2 and so far down until the final equation where we see that
this element is also a divisor of the last non-zero remainder. It follows that a greatest
common divisor is a factor of the last non-zero remainder. Traversing the algorithm in
reverse also shows that the last non-zero remainder is a common divisor of α and β. To
summarise, the last non-zero remainder has all other common divisors as a factor and
in particular, it must have maximal norm among all common divisors. This concludes
the proof. �

Corollary 2.11. Let α, β ∈ Z[ω] be non-zero and let δ denote a greatest common
divisor produced by the Euclidean algorithm. Any other greatest common divisor of α
and β is an associate of δ.

Proof. From the proof of correctness of the Euclidean algorithm, we see that any
greatest common divisor must divide δ. Hence if δ′ denotes another greatest common
divisor, we have δ = δ′γ for some γ ∈ Z[ω]. Using that δ′ and δ both have maximal
norm, we obtain

N(δ′) ≥ N(δ) = N(δ′)N(γ) ≥ N(δ′).

This shows that we must have equality throughout and hence N(γ) = 1 implying that
γ is a unit, completing the proof. �
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Example 2.12. Let us compute the greatest common divisor of α = 34 − 21ω and
β = 17 + 8ω. Applying Euclidean division iteratively gives

34− 21ω = (17 + 8ω)(1− 3ω) + (−7− 2ω)

17 + 8ω = (−7− 2ω)(−3− ω) + (−2− 3ω)

−7− 2ω = (−2− 3ω)(−2ω)− 1

−2− 3ω = (−1)(2 + 3ω)

and we conclude that −1 is a greatest common divisor.

The situation in the previous example is so important that it gets its own name.

Definition 2.13. If a greatest common divisor of α and β is a unit, α and β are called
coprime or relatively prime.

Let us consider one more example with two elements that are not coprime.

Example 2.14. Let α = 24 + 57ω and β = −42 − 12ω. Applying the Euclidean
algorithm gives

24 + 57ω = (−42− 12ω)(−1− 2ω) + 6− 15ω

−42− 12ω = (6− 15ω)(−2− 2ω)

and so 6− 15ω is a greatest common divisor.

Implementing the Euclidean algorithm is as simple as for the integers. We denote
the algorithm by EUCLID(α, β) and state it below.

Algorithm 1: EUCLID(α, β)

1 Input: α, β ∈ Z[ω]
2 Output: gcd(α, β)
3 if α ≡ 0 (mod β) then
4 return β

5 return EUCLID(β, α mod β)

2.3 Bezout’s theorem

Recall Bezout’s theorem for ordinary integers. If gcd(a, b) denotes the greatest common
divisor of two integers a and b, Bezout’s theorem says that we may find integers x and y
such that ax+by = gcd(a, b). This is done by working through the Euclidean algorithm
backwards. Let us demonstrate this procedure with an example.

Example 2.15. Let a = 258 and b = 78. Applying the Euclidean algorithm yields

258 = 78 · 3 + 24

78 = 24 · 3 + 6

24 = 6 · 4

so gcd(258, 78) = 6. Using the second equation, we obtain

6 = 78− 24 · 3,

and using the first equation, we get

6 = 78− (258− 78 · 3) · 3 = −3 · 258 + 10 · 78.

So in this case, we may choose x = −3 and y = 10.

8



As it turns out, Bezout’s theorem works in exactly the same way in Z[ω].

Theorem 2.16 (Bezout’s theorem). Let δ denote a greatest common divisor of α
and β in Z[ω]. There exist x, y ∈ Z[ω] such that αx+ βy = δ.

Proof. Due to Corollary 2.11, we can assume that the greatest common divisor given
is the one produced by the Euclidean algorithm by multiplying through with a unit
if necessary. Consider all the equations from the Euclidean algorithm. Isolate the
greatest common divisor (the last non-zero remainder) in the second-to-last equation
and substitute iteratively backwards until we are left with a linear combination of α
and β. �

Corollary 2.17. α and β are coprime if and only if there exist x, y ∈ Z[ω] such that

1 = αx+ βy.

Proof. Assume that α and β are coprime. Then the greatest common divisor is a unit
u, and by Bezout’s theorem, we may write u = αx′ + βy′ for some x′, y′ ∈ Z[ω]. Let
x = u−1x′ and y = u−1y′, then 1 = αx + βy as desired. Conversely, suppose that
1 = αx+ βy for some x, y ∈ Z[ω]. Then any common divisor of α and β divides 1 and
thus a greatest common divisor is a unit. �

Example 2.18. Let us again consider α = 34−21ω and β = 17+8ω. The computations
from the Euclidean division from before were

34− 21ω = (17 + 8ω)(1− 3ω) + (−7− 2ω)

17 + 8ω = (−7− 2ω)(−3− ω) + (−2− 3ω)

−7− 2ω = (−2− 3ω)(−2ω)− 1

−2− 3ω = (−1)(2 + 3ω).

We can now work backwards to obtain a solution (x, y) to −1 = αx+ βy. We have

−1 = −7− 2ω − (−2− 3ω)(−2ω)

= −7− 2ω − (17 + 8ω − (−7− 2ω)(−3− ω))(−2ω)

= −(17 + 8ω)(−2ω) + (−7− 2ω)(1 + (−3− ω)(−2ω))

= −(17 + 8ω)(−2ω) + (34− 21ω − (17 + 8ω)(1− 3ω))(1 + (−3− ω)(−2ω))

= (1 + (−3− ω)(−2ω))(34− 21ω) + (17 + 8ω)(2ω − (1− 3ω)(1 + (−3− ω)(−2ω)))

= (−1 + 4ω)α+ (−11− 17ω)β

so the solution is x = −1 + 4ω and y = −11− 17ω.

Example 2.19. Let us consider α = 3 + 4ω and β = α = −1− 4ω. We use Euclidean
division and obtain

3 + 4ω = (−1− 4ω)(−1 + ω) + (−2− 3ω)

−1− 4ω = (−2− 3ω)(2 + ω) + ω

−2− 3ω = ω(−1 + 2ω)

so a greatest common divisor of α and β is ω. In particular, α is coprime to its
conjugate. We now solve the equation αx+ βy = ω as follows:

ω = −1− 4ω − (−2− 3ω)(2 + ω)

= −1− 4ω − (3 + 4ω − (−1− 4ω)(−1 + ω))(2 + ω)

= (3 + 4ω)(−2− ω) + (−1− 4ω)(−2)

so x = −2− ω and y = −2 is a solution.
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When we dive into modular arithmetic in the next section, it will be useful to have
an algorithm to solve for x and y in the equation αx + βy = δ where δ = gcd(α, β).
For the integers this algorithm is typically called the extended Euclidean algorithm,
and we will also refer to this procedure as the extended Euclidean algorithm in Z[ω].
As we did for the (ordinary) Euclidean algorithm, we will implement it as a recursive
procedure. The algorithm, which we denote by EUCLIDEXT, is below.

Algorithm 2: EUCLIDEXT(α, β)

1 Input: α, β ∈ Z[ω]
2 Output: [gcd(α, β), x, y] such that αx+ βy = gcd(α, β)
3 if β == 0 then
4 return [α, 1, 0]

5 else
6 temp = EUCLIDEXT(β, α mod β)
7 return [temp[1], temp[3], temp[2]− α/β · temp[3]]

In the algorithm α/β denotes the quotient when we do Euclidean division with α
and β. We end this section with some important results that will be useful when we
get to unique factorization.

Proposition 2.20. Let α and β in Z[ω] be coprime and γ ∈ Z[ω].

(1) If α | βγ then α | γ.

(2) If α | γ and β | γ then αβ | γ.

Proof. Both proofs rely on Bezout’s theorem in the form of Corollary 2.17.

(1) As α and β are coprime, we may choose x, y ∈ Z[ω] such that

αx+ βy = 1.

Multiply this equation by γ, then

αγx+ βγy = γ.

As α divides both terms on the left hand side, α must divide γ as desired.

(2) Exercise for the reader.

�

2.4 Exercises

Exercise 2.4.1:
Let α = 1 − 2ω and β = −4. Find a greatest common divisor δ and determine

x, y ∈ Z[ω] such that αx+ βy = δ.

Exercise 2.4.2:
Let α = 3 + ω and β = 1 − ω. Find a greatest common divisor δ and determine
x, y ∈ Z[ω] such that αx+ βy = δ.

Exercise 2.4.3:
Prove Proposition 2.20 (2).

Exercise 2.4.4:
Let α, β, γ ∈ Z[ω] be non-zero. Prove that α and β are coprime to γ if and only if αβ

and γ are coprime.
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3 Modular arithmetic

Modular arithmetic is defined for Z[ω] exactly as for ordinary integers.

Definition 3.1. Let α, β, γ ∈ Z[ω] with γ 6= 0. We say that α is congruent to β
modulo γ if γ | α− β. In that case we write α ≡ β (mod γ).

Just like for ordinary integers, ≡ is an equivalence relation that behaves nicely with
addition and multiplication. The proofs are also identical. We will return to this in
section 6. We also note that if we apply Euclidean division on α and β and obtain
α = βγ + ρ, then α ≡ ρ (mod γ). We will often apply Euclidean division in order to
get a representative of the equivalence class with smallest possible norm.

3.1 Modular exponentiation

For some applications, it is essential to be able to compute high (integer) powers of
Eisenstein integers modulo some other Eisenstein integer. Let α, γ ∈ Z[ω] and n ∈ N.
A naive approach is to compute α ·α · · ·α a total of n times and then reduce modulo γ.
This can be very costly computationally however. Luckily, there is a simple algorithm
that does the trick extremely effectively. The algorithm is the same as in Z and can
be described as follows: Write

n = bl−12l−1 + · · ·+ b1 · 2 + b0

for bi ∈ {0, 1}. We let (bl−1, ..., b1, b0) denote the binary representation of n. We call l
the bitlength of n. Note that we may write

αn = (αbl−1)2
l−1

· · · (αb1)2 · αb0 .

Hence we can let i iterate from l − 1 to 0 and if bi = 1, we multiply by α and reduce
modulo γ. Each step we also have to square the result we have so far. The algorithm,
which we denote by MODEXP, is stated below.

Algorithm 3: MODEXP(α, γ, n)

1 Input: α, γ ∈ Z[ω], n ∈ N
2 Output: αn (mod γ)
3 r ← 1
4 let (bl−1, ..., b1, b0) be the binary representation of n
5 for i = l − 1 down to 0 do
6 r ← r2 (mod γ)
7 if bi = 1 then
8 r ← r · α (mod γ)

9 return r

Example 3.2. Let us compute (2 + 5ω)10 (mod 6 + 7ω). The binary representation
of n = 10 is (b3, b2, b1, b0) = (1, 0, 1, 0). We let r = 1 and i = 3.

i = 3: r ← 12 ≡ 1 (mod 6 + 7ω). b3 = 1, so r ← 1 · (2 + 5ω) ≡ −4− 2ω (mod 6 + 7ω).

i = 2: r ← (−4− 2ω)2 ≡ −2ω (mod 6 + 7ω). b2 = 0 so we stop.

i = 1: r ← (−2ω)2 ≡ 2 + 3ω (mod 6 + 7ω). b1 = 1 so r ← (2 + 3ω) · (2 + 5ω) ≡ 3 + 3ω
(mod 6 + 7ω).

i = 0: r ← (3 + 3ω)2 ≡ 1 + 3ω (mod 6 + 7ω). b0 = 0 so we are done.

Hence (2 + 5ω)10 ≡ 1 + 3ω (mod 6 + 7ω).

11



3.2 Linear congruences and the Chinese Remainder Theorem

In the integers, it is a well known fact that the equation

ax ≡ b (mod n)

has a solution if and only if gcd(a, n) | b. This result carries over directly to the
Eisenstein integers. The proof is also the same.

Proposition 3.3. For α, β, γ ∈ Z[ω], the equation

αρ ≡ β (mod γ)

has a solution if and only if gcd(α, γ) | β.

Proof. Let δ denote a greatest common divisor of α and γ. Assume ρ is a solution to
the equation. Then αρ − β = γτ for some τ ∈ Z[ω]. As δ divides αρ and γτ , δ also
divides β. Conversely, suppose δ divides β. From Bezout’s theorem, we can write

αx+ γy = δ

for some x, y ∈ Z[ω]. In particular,

α

δ
x+

γ

δ
y = 1

and multiplying by β and rearranging yields

αx
β

δ
= β − β

δ
yγ

hence xβ/δ is a solution to the equation. Note that this solution indeed is an element
of Z[ω] by assumption. �

The proof of the above proposition is constructive. Indeed, if we have access to an
extended Euclidean algorithm that provides a solution x, y to αx + γy = δ and δ | β,
a solution is xβ/δ. Denoting our algorithm to solve this problem by MODLINEAR-
SOLVE, we can explicitly state the algorithm as follows.

Algorithm 4: MODLINEARSOLVE(α, β, γ)

1 Input: α, β, γ ∈ Z[ω]
2 Output: ρ ∈ Z[ω] such that αρ ≡ β (mod γ) if such a ρ exists, otherwise an

error message
3 S ← EUCLIDEXT(α, γ)
4 if β mod S[1] == 0 then
5 return S[2] · β/S[1] (mod γ)

6 print(”Error, gcd(α, γ) does not divide β”)

Example 3.4. Let α = 5 + 3ω, β = 3− 4ω and γ = 3 + 7ω and consider the equation

αρ ≡ β (mod γ).

Using the Euclidean algorithm, we compute gcd(α, γ) = 1 and so there is a solution to
the above equation. From the Extended Euclidean algorithm, we get

α(3 + 4ω) + γ(−3− ω) = 1

12



and so a solution ρ is given by

ρ = (3 + 4ω)
β

1
= 25 + 16ω.

Reducing modulo γ, we obtain the nicer solution

ρ = 4 + 4ω.

The last thing we consider in this section is the Chinese Remainder Theorem. We
will use it later in section 6.

Theorem 3.5 (Chinese Remainder Theorem). Let α1, ..., αn ∈ Z[ω] and assume
γ1, ..., γn ∈ Z[ω] are pairwise coprime. Then the system of n equations

αi ≡ ρ (mod γi), i = 1, ..., n

has a solution ρ which is unique modulo γ1 · · · γn.

Proof. We prove the theorem via induction. The claim is trivial for n = 1 as we may
choose ρ = α1. Now assume n = 2. Consider the equation

α1 + γ1ρ
′ ≡ α2 (mod γ2)

which we can rewrite as
γ1ρ
′ ≡ α2 − α1 (mod γ2).

gcd(γ1, γ2) = 1 so there is a solution ρ′ to this equation by Proposition 3.3. Then it is
easy to see that ρ = α1 + γ1ρ

′ is a solution to both equations. Now assume n > 2 and
that the claim is proved for n− 1. Let ρ′ denote a solution to

αi ≡ ρ′ (mod γi), i = 1, ..., n− 1.

Consider the equation

ρ′ + ρ′′γ1 · · · γn−1 ≡ αn (mod γn).

Using that γ1 · · · γn−1 and γn are coprime, we have a solution ρ′′ by Proposition 3.3
just like in the case n = 2. Letting

ρ = ρ′ + ρ′′γ1 · · · γn−1,

we have found a solution ρ to the system with n equations. To prove uniqueness, let ρ1
and ρ2 denote two solutions to the system of equations. Then ρ1−ρ2 ≡ 0 (mod γi) for
i = 1, ..., n. Using that the γi are coprime, γ1 · · · γn | ρ1 − ρ2 which proves uniqueness
modulo γ1 · · · γn. �

Even though the theorem was proved using induction, the proof is constructive.
The reader is very welcome to rewrite the proof as an algorithm.

4 Primes in Z[ω]
4.1 Primes and irreducibility

Primes in Z[ω] are defined in the same way as in Z.

Definition 4.1. A nonunit α ∈ Z[ω] is a prime if the only factors of α are units and
associates of α. If α is not prime, we call α composite.

13



In other words, α is prime if and only if whenever we write α = βγ, then either β
or γ is a unit.

Example 4.2. 7 is a prime in Z but not in Z[ω]. Indeed, 7 = (3 + 2ω)(1 − 2ω) and
N(3 + 2ω) = N(1− 2ω) = 7 so neither 3 + 2ω or 1− 2ω are units.

In this section, we will use the norm extensively. The following lemma characterizes
those divisors of an Eisenstein integer α which have norm N(α).

Lemma 4.3. Let α ∈ Z[ω] be non-zero. Let β be a divisor of α with N(β) = N(α).
Then β is an associate of α.

Proof. Write α = βγ for some γ ∈ Z[ω]. Taking norms yields N(α) = N(β)N(γ) =
N(α)N(γ). As N(α) 6= 0, we have N(γ) = 1 so γ is a unit and β is an associate of
α. �

Note that the lemma only concerns divisors of α. It does not say that any two
Eisenstein integers with the same norm are associates. For example, α = 2 + 3ω and
β = −1− 3ω are not associates but they both have norm 7. The following theorem is
a simple but powerful tool to find Eisenstein primes.

Theorem 4.4. Let α ∈ Z[ω]. If N(α) is a prime in Z then α is a prime in Z[ω].

Proof. Consider a factorization α = βγ. We then have N(α) = N(β)N(γ). If N(α)
is prime, then either N(β) = 1 or N(γ) = 1. In any case, either β or γ is a unit and
hence the factorization is trivial. This proves that α is prime. �

Example 4.5. Consider 2 + 3ω. Since N(2 + 3ω) = 7, 2 + 3ω is an Eisenstein prime.

Example 4.6. The statement of Theorem 4.4 is not an equivalence. For example,
N(2) = 4 which is composite, but 2 turns out to be an Eisenstein prime.

We have one goal for the rest of this section, namely to classify the primes in Z[ω].
This can be done in an elegant fashion by introducing ideals. This is the content of
the next subsection.

4.2 Ideals in Z and Z[ω]
An ideal is a particularly nice subset of Z[ω]. They are generally defined for algebraic
objects known as rings of which Z and Z[ω] are examples. We will not dive into the
general theory but instead refer to chapter 7 to 9 of [2].

Definition 4.7. An ideal I of Z[ω] is a non-zero subset of Z[ω] that is closed under
addition and under multiplication by all elements of Z[ω]. That is, an ideal satisfies

(1) For each α, β ∈ I, we have α+ β ∈ I.

(2) For each α ∈ I and β ∈ Z[ω], we have αβ ∈ I.

An ideal is called proper if it is strictly contained in Z[ω] i.e. if I 6= Z[ω]. An ideal in
Z is defined in exactly the same way (just replace Z[ω] by Z above).

Lemma 4.8. Let I and J be ideals.

(1) I + J = {α+ β | α ∈ I, β ∈ J} is an ideal.

(2) IJ = {αβ | α ∈ I, β ∈ J} is an ideal.

(3) I ∩ J is an ideal.
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(4) IJ ⊆ I ∩ J ⊆ I + J .

Proof. (1) - (3) are immediate from the definition of an ideal. (4) is an exercise for the
reader. �

A particularly nice type of ideal is generated by a single element.

Definition 4.9. For α ∈ Z[ω], we define the ideal generated by α to be

(α) = {βα | β ∈ Z[ω]}.

Similarly, for a ∈ Z, define the ideal generated by a to be

(a) = {ba | b ∈ Z}.

An ideal generated by a single element is called a principal ideal.

Clearly, (α) defines an ideal. It turns out that this is the only type of ideal in Z[ω]
and it is a direct consequence of the existence of the Euclidean algorithm.

Lemma 4.10. The following hold:

(1) The only ideals in Z[ω] are ideals of the form (α) for some α ∈ Z[ω].

(2) The only ideals in Z are ideals of the form (a) for some a ∈ Z.

Proof. We prove (1). The proof of (2) is identical. The zero ideal is clearly of the
desired form, so assume we have a non-zero ideal I in Z[ω]. Consider the set N =
{N(α) | α ∈ I \ {0}}. N ⊆ N and by the well-ordering of N there exists a minimal
element m in N . Choose an α ∈ I such that m = N(α). Trivially, (α) ⊆ I. We claim
that the other inclusion holds. Let β ∈ I be arbitrary. Apply Euclidean division to
obtain β = αγ + ρ with N(ρ) < N(α). As α ∈ I, αγ ∈ I also since I is an ideal.
β ∈ I so ρ = β − αγ ∈ I. α has minimal norm among the non-zero elements of I, so
N(ρ) < N(α) implies that N(ρ) = 0 and thus ρ = 0. Hence β = αγ ∈ (α) and we have
proved I ⊆ (α). �

Remark 4.11. In ring theory, a ring in which every ideal is principal is called a principal
ideal domain.

We will need the important notion of a prime ideal.

Definition 4.12. A proper ideal I in Z[ω] (or in Z) is called a prime ideal if whenever
αβ ∈ I then α ∈ I or β ∈ I.

It turns out that an ideal (α) is prime if and only if α is prime (see the exercises).
We will return to ideals when we study the quotient Z[ω]/(α) in a later section.

4.3 The classification of primes in Z[ω]
We can now return to the main task of this section, namely classifying the primes in
Z[ω]. The following lemma tells us that the primes of Z[ω] are closely linked to those
in Z.

Lemma 4.13. Let π ∈ Z[ω] be an Eisenstein prime. Then π divides some integer
prime p.
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Proof. According to the exercises, (π) ∩ Z is an ideal in Z. Hence (π) ∩ Z = (a) for
some a ∈ Z. If bc ∈ (π) ∩ Z for b, c ∈ Z, bc = π · β for some β ∈ Z[ω]. In particular, π
must divide at least one of b or c. It follows that (π) ∩ Z is a prime ideal in Z. Hence
(π) ∩ Z = (p) for some prime integer p. In particular, p = π · α for some α ∈ Z[ω] and
the claim follows. �

Corollary 4.14. For a prime π ∈ Z[ω], either ππ = p for some prime p ∈ Z[ω] or π
is associated to a prime in Z.

Proof. We know from the previous lemma that π divides some prime p in Z. Write
p = π · α for some α ∈ Z[ω]. Taking norms, we get p2 = N(π)N(α). This leaves the
two possibilities N(π) = p or N(π) = p2. If N(π) = p, we have ππ = p. If N(π) = p2,
N(α) = 1 and so π is associated to p. �

We now know two essential facts. If a prime p in Z is not a prime in Z[ω] it can
only happen because p factors as exactly p = ππ for an Eisenstein prime π. Therefore,
we need to study the equation a2 − ab+ b2 = p. If integer solutions for a and b exist,
then π = a + bω satisfies ππ = p. If solutions do not exist, p must remain prime. We
are on the verge of solving this problem once and for all, but in order to do so, we need
a small technical lemma.

Lemma 4.15. Let p ≡ 1 (mod 3) be a prime. There exists a k satisfying 0 ≤ k < p
such that p divides k2 + 3.

Proof. It is known from elementary number theory that the group of units (Z/pZ)× is
cyclic of order p − 1. We refer to chapter 4 in [3] for details. Let g be a generator of
this group. Then the element c = g(p−1)/3 is well-defined by our assumption on p and
has order 3. Consider the element (2c+ 1)2. Multiplying (2c+ 1)2 + 3 by c− 1 yields

(c− 1)((2c+ 1)2 + 3) = (c− 1)(4c2 + 1 + 4c+ 3) = 4(c− 1)(c2 + c+ 1)

= 4(c3 − 1) ≡ 0 (mod p).

Hence either c − 1 ≡ 0 (mod p) or (2c + 1)2 + 3 ≡ 0 (mod p). Since c has order 3,
the first case is impossible and it follows that (2c+ 1)2 ≡ −3 (mod p). Hence we have
constructed a solution k to k2 ≡ −3 (mod p). By reducing modulo p, we can also
assume that 0 ≤ k < p. This concludes the proof. �

The first part of the proof of the previous lemma can be carried out using quadratic
reciprocity. The reader is encouraged to carry out this step, should the reader be
familiar with said theorem.

Lemma 4.16. An associate of an integral prime p is an Eisenstein prime if and only
if p ≡ 2 (mod 3).

Proof. We start by noting that associates of p = 3 are not prime in Z[ω] since we have
the non-trivial factorization 3 = (1 − ω)(2 + ω). We thus only need to consider the
case p > 3.

Assume p ≡ 1 (mod 3). Assume p is a prime in Z[ω]. By the previous corollary,
mp = k2 + 3 for some m and 0 ≤ k < p. Defining β = 1 + k+ 2ω, a quick computation
shows that k2 + 3 = ββ. Then p must divide either β or β. Then p2 | N(β) = N(β)
and it follows that

m2p2 = N(β)2 ≥ p4

and in particular m ≥ p. However, we have that

mp = k2 + 3 ≤ (p− 1)2 + 3 = p2 − 2p+ 4 < p(p− 1)
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since p ≡ 1 (mod 3) implies that p > 4. Dividing by p, we obtain m < p− 1, so m ≥ p
is a contradiction. We conclude that p cannot be a prime in Z[ω] as claimed.

Conversely, suppose p is not a prime. By the previous corollary, p must factor as
p = ππ. Write π = a+ bω. Then we have p = a2− ab+ b2. Hence 4p = (2a− b)2 + 3b2.
Reducing modulo 3, we get p ≡ (2a − b)2 and since a square is always 0 or 1 modulo
3, we have p ≡ 1 (mod 3) as desired. �

We now have the results needed to state the main theorem of this section.

Theorem 4.17 (Classification of primes in Z[ω]). Up to associates, the primes in
Z[ω] are:

(1) 1− ω.

(2) Integral primes p ≡ 2 (mod 3).

(3) π with N(π) = p a prime with p ≡ 1 (mod 3).

Proof. Combine the results of this section in a suitable manner. �

Example 4.18. −2− 2ω is an Eisenstein prime since it is associated to the prime 2.

4.4 Exercises

Exercise 4.4.1:
Verify that 3 + 7ω, 1 + 4ω and 1− ω are Eisenstein primes.

Exercise 4.4.2:
Prove (4) of Lemma 4.8.

Exercise 4.4.3:
Let I be an ideal in Z[ω]. Show that I ∩ Z is an ideal in Z.

Exercise 4.4.4:
Show that for an ideal I in Z[ω], I = Z[ω] if and only if I contains a unit.

Exercise 4.4.5:
Let α, β ∈ Z[ω]. Prove that (α) + (β) = (δ) with δ a greatest common divisor of α

and β.

Exercise 4.4.6:
Prove that (α) is a prime ideal if and only if α is prime.

Exercise 4.4.7:
Show that (α) = (β) if and only if α and β are associates.

Exercise 4.4.8:
A proper ideal M is called a maximal ideal if it is maximal with respect to inclusion

amongst all proper ideals i.e. if I is another proper ideal with M ⊆ I, then M = I.
Prove that in Z[ω] or Z, a maximal ideal is prime.

This also holds for general rings. The converse, that a prime ideal is maximal, does
not hold in general. It does hold for Z and Z[ω], however (except for the zero ideal).
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Exercise 4.4.9:
Use quadratic reciprocity to show that k2 ≡ −3 (mod p) has a solution for p ≡ 1

(mod 3).

Exercise 4.4.10:
Determine whether the following are Eisenstein primes:

1)3− 7ω.

2)3 + 5ω.

3)1− 4ω.

4)−3 + 5ω.

5)8− 2ω.

6)7ω.

7)−5− 5ω.

8)1 + 36ω.

5 Unique factorization

5.1 The fundamental theorem of arithmetic for Z[ω]
The fundamental theorem of arithmetic in Z says that any integer not equal to 1, -1
or 0 has an essentially unique factorization into primes. It is important to understand
what is meant by ”essentially unique”. A usual formulation is that an integer can
be written as a unique product of either 1 or -1 and a list of positive primes up to
permutation. For example,

18 = 2 · 32, −30 = −1 · 2 · 3 · 5.

Up to permutation means that we don’t distinguish between the order of the prime
factors. As an example, the three factorizations

18 = 2 · 32, 18 = 3 · 2 · 3, 18 = 32 · 2

are considered to be the same. But this does not fully capture the uniqueness we will
work with in this paper. There is nothing stopping us from writing

18 = 2 · (−3)2 or 18 = (−1)(−2) · 32

for example. However, we still don’t consider these factorizations to be different from
the ones above since all the primes are still the same up to permutation and up to
associates. In other words, every prime in one factorization is associated to some
prime in the other factorization and there are the same number of primes involved.
This is the uniqueness we will be working with. The difference is that instead of two
units, we have six units in Z[ω]. To prove the fundamental theorem of arithmetic for
Z[ω], we will break it down into a sequence of lemmata.

Lemma 5.1. Every α ∈ Z[ω] with N(α) > 1 is a product of primes.

Proof. We use induction on the norm. No elements of norm two exist, so the base case
is N(α) = 3. But then α is a prime by Theorem 4.4. Now consider some n > 3. If
there are no Eisenstein integers of norm n we are done, so assume that there exists at
least one Eisenstein integer α with N(α) = n. If α is prime, we are done, so assume
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α is composite and let α = βγ be a non-trivial factorization. As N(β), N(γ) < N(α),
the induction hypothesis implies that β and γ are products of primes. But then α is a
product of primes and the induction step is complete. �

Now we know that any Eisenstein integer has a prime factorization. But still two
problems remain. The first is that we need to show uniqueness which we get to now.
The other problem is the question of actually computing the factorization. We will get
to that in the following subsection.

Lemma 5.2 (Euclid’s lemma). If π is an Eisenstein prime and π | αβ then either
π | α or π | β. More generally, if π divides α1 · · ·αk, then π divides at least one αi.

Proof. If π divides α we are done so assume not. As π is prime, this implies that π and
α are coprime. By Bezout’s theorem, there exist x, y ∈ Z[ω] such that αx + πy = 1.
Multiply by β and we have αβx+ πβy = β. As π divides the left hand side, π divides
β and we are done. The rest of the argument is left to the reader. �

Theorem 5.3 (The fundamental theorem of arithmetic). Any Eisenstein integer
α with N(α) > 1 has a unique factorization into primes in the following sense: There
exists a list of primes π1, ..., πk such that α = π1 · · ·πk and if α = π′1 · · ·π′m is a different
factorization then k = m and each πi is associated to some π′j.

Proof. We use induction on the norm to prove the theorem. The base case is again
N(α) = 3 and we know that α is a prime so the theorem holds. Now assume N(α) > 3
and that every Eisenstein integer of norm strictly less than N(α) has a unique prime
factorization as given in the theorem. We can again assume that there exist Eisenstein
integers of norm N(α) as otherwise there is nothing to prove. By the previous lemma,
there exists some prime factorization α = π1 · · ·πk. Let α = π′1 · · ·π′m be another
factorization.

π1 divides π′1 · · ·π′m so using Lemma 5.2, π divides at least one of π′1, ..., π
′
m. By

relabeling if necessary, we can assume that π1 divides π′1. This is only possible if these
primes are associates i.e. π1 = uπ′1 for some unit u. We hence have

π1 · · ·πk = uπ1π
′
2 · · ·π′m

implying
π2 · · ·πk = uπ′2 · · ·π′m.

β = π2 · · ·πk has norm strictly less than N(α), so the induction hypothesis implies
that β has a unique prime factorization as stated in the theorem. This implies that
k − 1 = m− 1 and so k = m. Furthermore, each of the primes on the left hand side is
associated to one of the primes on the right hand side. This concludes the induction
step and hence the proof. �

We have now proved existence and uniqueness of prime factorizations in Z[ω]. How-
ever, the proofs have been unconstructive. In the following subsection we will provide
an explicit algorithm for computing prime factorizations.

5.2 A factorization algorithm

We are already familiar with some simple prime factorization algorithms in Z. In this
paper we will sweep factorization methods in Z under the rug and the reader is free to
use any method that they please. The following algorithm relies on the classification
of primes given in Theorem 4.17. The strategy for computing the prime factorization
of α is as follows:
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(1) Compute N(α) and factor N(α) = p1 · · · pk into a product of primes in Z. Let
P = (p1, ..., pk) be a tuple denoting the prime factors of N(α), and let F = ()
denote the tuple of factors of α.

(2) For each pi, do the following:

� If pi = 3, remove pi from P and add 1− ω to F .

� If pi ≡ 2 (mod 3), remove 2 copies of pi from P . Add pi to F .

� If pi ≡ 1 (mod 3), remove pi from P and determine an integer k such that
k2 ≡ −3 (mod pi). Let δ = gcd(1 + k + 2ω, pi) denote a greatest common
divisor of 1 + k+ 2ω and pi. If this greatest common divisor divides α, add
it to F . If not, add δ instead.

(3) F = (π1, ..., πk) is now a list of prime factors of α. To obtain the final factor-
ization, compute the product of the elements in F and divide α by this product.
This yields a unit u such that α = uπ1 · · ·πk.

We now explain the steps in the algorithm. The first step is self-explanatory. Con-
cerning step (2), we know that 3 = (1 + ω)(1 − ω)2 and that N(1 − ω) = 3. Hence
1−ω is a factor of α if 3 shows up in the factorization of the norm. From the proof of
a previous result, if a prime p ≡ 2 (mod 3) is a factor of the norm, it can only come
from a prime associated to p in Z[ω]. This prime has norm p2 and thus two factors
should be removed from the norm. If p ≡ 1 (mod 3) shows up, we know that p = ππ
for some Eisenstein prime π. We also know that mp = k2 + 1 for some 0 ≤ k < p
and 1 ≤ m < p − 1. Let β = 1 + k + 2ω, then mp = ββ. In particular, π | β or
π | β. As N(p) = p2 > mp = N(β), p cannot divide β. It follows that if π | β, then
gcd(p, β) = π (up to associates). If π | β, then π = gcd(p, β) and thus gcd(p, β) = π
(see the exercises). We do not know which of π and π is the correct factor, so we simply
check by dividing.

The algorithm can be written in a formal manner as follows:
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Algorithm 5: Prime factorization in Z[ω]

1 Input: α ∈ Z[ω]
2 Output: A list of a single unit u and primes π1, ..., πm such that

α = uπ1 · · ·πm.
3 Compute the prime factors p1, ..., pk of N(α)
4 F ← []
5 i← 1
6 while i ≤ k do
7 if pi = 3 then
8 Push 1− ω to F
9 α← α/(1− ω)

10 if pi ≡ 2 (mod 3) then
11 Push pi to F
12 α← α/pi
13 i← i+ 1

14 if pi ≡ 1 (mod 3) then
15 Determine k such that k2 ≡ −3 (mod pi)
16 π ← gcd(pi, 1 + k + 2ω)
17 if π - α then
18 π ← π

19 Push π to F
20 α← α/π

21 i← i+ 1

22 Push α to F
23 return F

Example 5.4. Let us factor α = 10 + 2ω. The norm is

N(α) = 102 − 10 · 2 + 22 = 84 = 22 · 3 · 7.

2 is a factor of the norm, so 2 is a factor of α and we have 3 and 7 left to consider. We
see that 1−ω is a factor of α and we only have to consider 7. We need to find a k such
that k2 + 3 is divisible by 7. k = 2 is an obvious choice. In fact, 1 + k + 2ω = 3 + 2ω
has norm 7. Hence we can skip the part with the greatest common divisor. We check
whether 3 + 2ω divides α:

10 + 2ω

3 + 2ω
=

(10 + 2ω)(1− 2ω)

7
=

14− 14ω

7
= 2− 2ω

which is in Z[ω]. We conclude that the prime factors of 10+2ω are 2, 1−ω and 3+2ω.
The product of these is 10 + 2ω, so the factorization is 10 + 2ω = 2(1− ω)(3 + 2ω).

Example 5.5. Let us factor α = 5 + 16ω. We compute

N(α) = 201 = 3 · 67.

Hence 1− ω is a factor. Also, 82 + 3 = 67, so we have either π = 1 + 8 + 2ω = 9 + 2ω
or π as a factor. It is checked that π divides α and thus the prime factors are 1 − ω
and 9 + 2ω. The product of these is 11 − 5ω. Dividing α by 11 − 5ω gives ω. Hence
α = ω(1− ω)(9 + 2ω) is the factorization of α.
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5.3 Factorization and greatest common divisors

In Z there is an alternative way of computing greatest common divisors based on the
prime factorization of the two numbers involved. As an example, consider 126 and 78.
We factor

126 = 2 · 32 · 7, 78 = 2 · 3 · 13.

The trick is to take the lower power of each prime which shows up in either of the two
factorizations. In this case, these primes are 2, 3, 7 and 13. Rewriting a bit, we have

126 = 21 · 32 · 71 · 130, 78 = 21 · 31 · 70 · 131.

Taking the smaller power of each prime, we arrive at the greatest common divisor
21 · 31 · 70 · 130 = 6. The same formula works for Eisenstein integers.

Proposition 5.6. Let α, β ∈ Z[ω] have norms N(α), N(β) > 1. Let π1, ..., πk denote
the primes involved in the prime factorizations of α and β and write

α = πe11 · · ·π
ek
k , β = πf11 · · ·π

fk
k .

Then a greatest common divisor of α and β is given by

π
min(e1,f1)
1 · · ·πmin(ek,fk)

k .

Proof. Let δ be a common divisor. Any prime in the factorization of δ must be among
π1, ..., πk as otherwise δ could not be a divisor in the first place. Hence δ is of the form

δ = πm1
1 · · ·πmkk .

Consider a prime factor of δ, say πi. Then πi also divides both α and β at least mi times
due to uniqueness of prime factorizations. Hence mi ≤ ei, fi and thus mi ≤ min(ei, fi).

It follows that for each prime factor πi of δ, πmii divides π
min(e1,f1)
1 · · ·πmin(ek,fk)

k . Using

Proposition 2.20 inductively, it follows that δ divides π
min(e1,f1)
1 · · ·πmin(ek,fk)

k . Hence
the latter has maximal norm among all common divisors and is thus a greatest common
divisor. �

Example 5.7. Consider α = 6− 8ω and β = −4 + 2ω. Factoring gives

α = −1 · 2(−3 + 4ω), β = ω · 2(3 + 2ω)

and it is readily checked that 2 is the only common divisor up to associates in the
factorizations. Hence 2 is a greatest common divisor of α and β.

The above proposition is not recommended if one is interested in computing greatest
common divisors. First of all, computing prime factorizations is difficult, especially by
hand if primes congruent to 1 modulo 3 show up. Second, it is not always easy to see
whether two prime factors are associates. If two associated (but not identical) primes
show up, one has to rewrite one as a unit multiple of the other in order to apply the
proposition. This is not a concern when applying the Euclidean algorithm. The result
is not useful for computations but it is useful since it provides a nice relation between
greatest common divisors and least common multiples, the latter being the subject of
the next subsection.
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5.4 Least common multiples

For two integers a and b, the least common multiple is the smallest integer m such that
both a and b divide m. The corresponding definition in Z[ω] is below.

Definition 5.8. Let α, β ∈ Z[ω] be non-zero. A least common multiple of α and β is
an Eisenstein integer γ of minimal norm such that α, β | γ. We will at times denote a
least common multiple by lcm(α, β).

Just like greatest common divisors are not unique, least common multiples are not
unique. Indeed, one can multiply a least common multiple by a unit and still have a
least common multiple.

Proposition 5.9. If α and β are non-zero and coprime, a least common multiple is
αβ.

Proof. Let γ ∈ Z[ω] such that α, β | γ. By Proposition 2.20 (2), αβ | γ. Hence
N(αβ) ≤ N(γ) proving that αβ is a common multiple of α and β with minimal
norm. �

Just like with greatest common divisors, we can compute least common multiples
using the prime factorizations of the integers involved.

Proposition 5.10. Let α, β ∈ Z[ω] have norms N(α), N(β) > 1. Let π1, ..., πk denote
the primes involved in the prime factorizations of α and β and write

α = πe11 · · ·π
ek
k , β = πf11 · · ·π

fk
k .

Then a least common multiple of α and β is given by

π
max(e1,f1)
1 · · ·πmax(ek,fk)

k .

Proof. Let γ denote a common multiple of α and β i.e. an element of Z[ω] such that
α | γ and β | γ. Consider one of the primes π1, ..., πk, say πi. πi divides either α or β,

so πi also divides γ. Furthermore, both πeii and πfii must divide γ due to uniqueness
of prime factorizations. Using Proposition 2.20 inductively, we have that

π
max(e1,f1)
1 · · ·πmax(ek,fk)

k .

must divide δ and N(π
max(e1,f1)
1 · · ·πmax(ek,fk)

k ) ≤ N(δ). As π
max(e1,f1)
1 · · ·πmax(ek,fk)

k is
a common multiple of α and β and δ was an arbitrary common multiple, the proposition
follows. �

Example 5.11. Consider α = 14 + 80ω and β = −8 + 4ω. Factoring these elements
yield

α = −1 · 2(−3 + 4ω)2, β = ω · 22(3 + 2ω).

−3 + 4ω and 3 + 2ω are not associates so using the above theorem, a least common
multiple is given by

lcm(α, β) = 22(−3 + 4ω)2(3 + 2ω) = 236− 216ω.

Computing a least common multiple using the prime factorization of both elements
is a slow method in general. Thankfully, we do not have to use this method. We have
a fast method for computing the greatest common divisor, namely the Euclidean algo-
rithm, and we can use this method indirectly to compute the least common multiple.
The following result formalizes this.
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Proposition 5.12. Let α, β ∈ Z[ω], and let δ denote a greatest common divisor and
γ a least common multiple of α and β. Then αβ is associated to δγ. In other words,
for a suitable unit u, we have

αβ = u gcd(α, β)lcm(α, β).

Proof. Using the setup of propositions 5.6 and 5.10, simply note that min(ei, fi) +
max(ei, fi) = ei + fi. The result now follows immediately from the mentioned propo-
sitions. �

5.5 Exercises

Exercise 5.5.1:
Prove the second part of Lemma 5.2.

Exercise 5.5.2:
Prove that 1− ω is associated to its conjugate.

Exercise 5.5.3:
Let α, β ∈ Z[ω]. Prove that if δ is a greatest common divisor of α and β then δ is a

greatest common divisor of α and β.

Exercise 5.5.4:
Factor −9 + 4ω into a product of primes in Z[ω].

Exercise 5.5.5:
Factor 12− 8ω into a product of primes in Z[ω].

Exercise 5.5.6:
Factor −16 + ω into a product of primes in Z[ω].

Exercise 5.5.7:
Compute the least common multiple of α = 3 + 6ω and β = 5 + ω.

Exercise 5.5.8:
Compute the least common multiple of α = 3− 9ω and β = 3 + 7ω.

6 The ring Z[ω]/(γ)
6.1 The structure of Z[ω]/(γ)
Recall that for a fixed element γ ∈ Z[ω] \ {0}, we say that α ≡ β (mod γ) if γ | α− β.
As mentioned previously, ≡ is an equivalence relation on Z[ω] (which of course depends
on the chosen γ). Hence we get a partition of Z[ω] into equivalence classes. This is
formalized in the following definition.

Definition 6.1. We use [·]γ to denote the equivalence class of elements such that
α ≡ β (mod γ). Explicitly,

[α]γ = {β ∈ Z[ω] | α ≡ β (mod γ)}.

When γ is clear from the context, we will usually just write [·]γ = [·]. We let Z[ω]/(γ)
denote the set of these equivalence classes i.e.

Z[ω]/(γ) = {[α]γ : α ∈ Z[ω]}.

If β ∈ [α]γ , we call β a representative for this class.
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The goal of this section is to describe Z[ω]/(γ) in detail. We start by describing
the simplest possible example.

Example 6.2. Let γ be a unit. Then γ divides every element of Z[ω] i.e. γ | α− 0 for
every α ∈ Z[ω]. Hence [α]γ = [0]γ for every α ∈ Z[ω] and thus

Z[ω]/(γ) = {[0]γ}

is a set with one element. Note that 1 = N(γ).

In the next subsection we will determine the number of elements in Z[ω]/(γ). Before
doing so, we investigate the structure of Z[ω] more thoroughly. We want to define
addition and multiplication on Z[ω]/(γ) in a natural way, namely by

[α]γ + [β]γ = [α+ β]γ

[α]γ · [β]γ = [αβ]γ .

The following lemma shows that these operations are indeed well-defined.

Lemma 6.3. + and · on Z[ω]/(γ) defined as above are well-defined arithmetic opera-
tions.

Proof. We need to show that

[α]γ + [β]γ = [α+ β]γ

regardless of the chosen representatives of the equivalence classes. Assume α′, β′ ∈ Z[ω]
satisfy [α]γ = [α′]γ and [β]γ = [β′]γ . We have γ | α− α′ and γ | β − β′ so

γ | (α− α′) + (β − β′) = (α+ β)− (α′ + β′)

showing that [α + β]γ = [α′ + β′]γ . Hence + is well-defined. We let the reader verify
that · is also well-defined. �

It is not difficult to see that addition and multiplication on Z[ω]/(γ) also behave
well with respect to each other i.e. that the usual distributive laws hold,

[α]γ([β]γ + [ρ]γ) = [α]γ [β]γ + [α]γ [ρ]γ .

This makes computations in Z[ω]/(γ) straightforward. One simply works like one would
do in Z[ω] and reduce modulo γ.

Example 6.4. Consider Z[ω]/(γ) for γ = 3 + 2ω. Let α = 8 + 9ω. We have

8 + 9ω = (4 + 2ω)(3 + 2ω)− ω

and so
[8 + 9ω]γ = [−ω]γ .

A natural question to ask is when an element of Z[ω]/(γ) is invertible i.e. when
an inverse exists. Before doing so, we need to specify what an invertible element is.
Clearly, every element of Z[ω]/(γ) has an additive inverse since

[α]γ + [−α]γ = [α− α]γ = [0]γ

for any α ∈ Z[ω]. Hence it is only interesting to study the problem for multiplicative
inverses.
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Definition 6.5. An element [α]γ of Z[ω]/(γ) is called invertible if there exists some
[β]γ ∈ Z[ω]/(γ) such that

[α]γ [β]γ = [1]γ .

If u is a unit in Z[ω], [u]γ is clearly invertible with inverse [u−1]γ . But this is not
the only possible case. The following theorem characterizes the invertible elements in
Z[ω]/(γ).

Theorem 6.6. An element [α]γ ∈ Z[ω]/(γ) is invertible if and only if α and γ are
coprime.

Proof. Assume [α]γ is invertible and let [β]γ be an inverse. This is equivalent to

1 = [α]γ [β]γ = [αβ]γ ⇔ αβ ≡ 1 (mod γ)

⇔ αβ = 1 + ργ for some ρ ∈ Z[ω]

⇔ αβ − ργ = 1 for some ρ ∈ Z[ω]

⇔ α and γ are coprime.

The last equivalence follows from Bezout’s theorem. �

The case where γ is a prime is so nice that it deserves its own corollary.

Corollary 6.7. If γ is a prime, every element of Z[ω]/(γ) except [0]γ is invertible.

Recall Fermat’s little theorem for the integers. If p is a prime that does not divide
a, then

ap−1 ≡ 1 (mod p).

We end this subsection by proving a similar result for Z[ω].

Theorem 6.8 (Fermat’s little theorem). If π is a prime that does not divide α,
then

αN(π)−1 ≡ 1 (mod π).

Proof. As π does not divide α, π and α are coprime. By the above corollary, the
invertible elements of Z[ω]/(π) are (Z[ω]/(π)) \ {[0]π} so N(π)− 1 invertible elements
in total. [α]π is invertible so the map ϕ : Z[ω]/(π)→ Z[ω]/(π) given by

ϕ([β]π) = [α]π[β]π

is a bijection (exercise). Hence∏
[β]π 6=[0]π

[β]π =
∏

[β]π 6=[0]π

[α]π[β]π = [α]N(π)−1
π

∏
[β]π 6=[0]π

[β]π

and since the product is itself invertible, [α]
N(π)−1
π = [1]π as desired. �

6.2 The number of elements in Z[ω]/(γ)
It remains to determine the number of elements in Z[ω]/(γ). This takes a bit of work,
so we do it in steps.

Lemma 6.9. Let γ = 1− ω. Then Z[ω]/(γ) contains three elements. Explicitly,

Z[ω]/(γ) = {[0]γ , [1]γ , [−1]γ}.
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Proof. Let α ∈ Z[ω] and apply Euclidean division to obtain α = βγ + ρ where N(ρ) <
N(γ) = 3. We thus have N(ρ) ∈ {0, 1, 2}. 2 is not of the form a2− ab+ b2 for integers
a, b so 2 is not a norm of any Eisenstein integer. Hence N(ρ) ∈ {0, 1}. If N(ρ) = 0,
ρ = 0 and γ divides α. Hence the case N(ρ) = 0 corresponds to [α]γ = [0]γ . Assume
N(ρ) = 1. This implies that ρ is a unit. We have six cases:

� ρ = 1: [α]γ = [1]γ .

� ρ = −1: [α]γ = [−1]γ .

� ρ = ω: ω ≡ ω + (1− ω) ≡ 1 (mod γ) so [α]γ = [1]γ .

� ρ = −ω: −ω ≡ −ω − (1− ω) ≡ −1 (mod γ) so [α]γ = [−1]γ .

� ρ = 1 + ω: 1 + ω ≡ 1 + ω − (1− ω) ≡ 2ω (mod γ). 3 is divisible by γ so 2 ≡ −1
(mod γ) and hence 1 + ω ≡ −ω ≡ −1 (mod γ).

� ρ = −1− ω: −1− ω ≡ 1 (mod γ).

�

Lemma 6.10. Assume γ1, γ2 ∈ Z[ω] are non-zero associates. Then

Z[ω]/(γ1) = Z[ω]/(γ2).

Proof. Write γ2 = uγ1 for a unit u in Z[ω]. For α, β ∈ Z[ω], α ≡ β (mod γ1) means
that γ1 | β − α i.e β − α = ργ1 for some ρ ∈ Z[ω]. We can write the right hand side as
ργ1uu

−1 = ργ2u
−1 and so γ2 also divides β−α. It follows that the equivalence classes

modulo γ1 and γ2 are the same. �

The next step in determining the number of elements in Z[ω]/(γ) concerns the case
where γ is a prime. We need a definition before considering this case.

Definition 6.11. Let γ be non-zero. A set of representatives for Z[ω]/(γ) is a sub-
set of elements of Z[ω] such that each equivalence class of Z[ω]/(γ) has exactly one
representative in the list.

Example 6.12. For γ = 1− ω, a set of representatives is given by {0, 1,−1}.

Theorem 6.13. Let γ be a prime in Z[ω]. Then Z[ω]/(γ) contains N(γ) elements.

Proof. By the classification of primes, Theorem 4.17, and the lemma just proved, there
are three cases to check:

(1) γ = 1− ω. This is Lemma 6.9 above.

(2) γ = p where p is an integral prime p ≡ 2 (mod 3). We claim that the set

R = {a+ bω | 0 ≤ a, b < p}

is a set of representatives for Z[ω]/(γ). Let α = c + dω ∈ Z[ω] be arbitrary and
apply Euclidean division (in the integers) to obtain

c = q1p+ r1, d = q2p+ r2

with 0 ≤ r1, r2 < p. Then r1 + r2ω is a representative of [α]γ contained in
the aforementioned set. Hence every element of Z[ω]/(γ) has a representative in
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R. Now assume that a + bω and c + dω represent the same class [α]γ . Then
a+ bω ≡ c+ dω (mod p) and thus

p | (a+ bω)− (c+ dω) = (a− c) + (b− d)ω

implying that p | a − c and p | b − d. But 0 ≤ a, b, c, d < p so we must have
a − c = 0 and b − d = 0 i.e. a = c and b = d. We conclude that R is indeed a
set of representatives. R contains p2 = N(γ) elements and we are done with this
case.

(3) γ = π where N(π) = p a prime with p ≡ 1 (mod 3). We claim that

R = {0, 1, ..., p− 1}

is a set of representatives for Z[ω]/(γ). Write π = a+ bω. p = a2 − ab+ b2 and
so p cannot divide b. Because p is a prime, gcd(b, p) = 1. If α = c+ dω denotes
any element of Z[ω] we can find an integer n such that nb ≡ d (mod p). Then

α− nπ ≡ c− na+ (d− nb)ω ≡ c− na (mod p)

and since π | p, this implies that α − nπ ≡ c − na (mod π). We have shown
that every [α]γ ∈ Z[ω]/(γ) has a representative which is an integer. By reducing
modulo p, we can choose this representative to be in R. Assume k ≡ k′ (mod π)
with k, k′ ∈ R. Then π | k − k′ and in particular, the norm of π, i.e. p, divides
the norm of k − k′ which is (k − k′)2. Hence p | k − k′ and since 0 ≤ k, k′ < p,
this implies k = k′. We conclude that R is a set of representatives. R contains
p = N(γ) elements and we are done.

�

We have shown that for γ a prime, Z[ω]/(γ) has N(γ) elements. This property also
holds for any γ 6= 0 as the next theorem shows.

Theorem 6.14. If γ 6= 0, Z[ω]/(γ) has N(γ) elements.

Proof. Factor γ into a product of primes as γ = πe11 · · ·πenn where the primes πi are
distinct. Then the πeii are pairwise coprime. Consider the product

Z[ω]/(πe11 )× · · · × Z[ω]/(πenn ).

From the previous theorem we know that the number of elements of the right hand
side is N(πe11 ) · · ·N(πenn ) = N(γ). Hence we are done if we can establish a bijection

ϕ : Z[ω]/(γ)→ Z[ω]/(πe11 )× · · · × Z[ω]/(πenn ).

Let [α]γ ∈ Z[ω]. Define ϕ by

ϕ([α]γ) = ([α]πe11
, ..., [α]πenn ).

We leave it as an exercise for the reader to verify that this map is well-defined. We now
show that it is surjective and injective. For surjectivity, let ([α1]πe11

, . . . , [αn]πenn ) be an
element of the product. Unwinding the definitions, we need to determine an element
α ∈ Z[ω] such that

α ≡ αi (mod πeii ), i = 1, ..., n.

But such an α exists by the Chinese Remainder Theorem, Theorem 3.5. The same
theorem says that α is unique modulo πe11 · · ·πenn = γ which tells us that the map is
injective as well. This completes the proof. �
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6.3 Exercises

Exercise 6.3.1:
Prove that · on Z[ω]/(γ) defined by

[α]γ · [β]γ = [αβ]γ

is well-defined.

Exercise 6.3.2:
Prove that the map ϕ defined in the proof of Fermat’s little theorem is indeed a

bijection.

Exercise 6.3.3:
Find a set of representatives for Z[ω]/(γ) when γ = 17.

Exercise 6.3.4:
Find a set of representatives for Z[ω]/(γ) when γ = 3 + 7ω.

Exercise 6.3.5:
Verify that the map ϕ given in Theorem 6.14 is well-defined.

7 Cubic reciprocity

7.1 The cubic residue symbol

We now dive into a more advanced topic, namely cubic reciprocity. If p is an odd
integral prime, we define the quadratic residue symbol/Legendre symbol to be

(
a

p

)
=


1, x2 ≡ a (mod p) has a solution

−1, x2 ≡ a (mod p) has no solution

0, p | a
.

An elegant and useful result is that if p and q are different odd primes, then(
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

This result is called the law of quadratic reciprocity. In words, the result states that
when p ≡ 1 (mod 4) or q ≡ 1 (mod 4), the equation x2 ≡ p (mod q) has a solution if
and only if x2 ≡ q (mod p) has a solution. If either p or q is congruent to 3 modulo 4,
x2 ≡ p (mod q) has a solution if and only if x2 ≡ q (mod p) does not have a solution.

A similar result exists for Z[ω] and it is in some ways a lot nicer than the one in Z.
The result does not concern quadratic residues but cubic residues.

Definition 7.1. Let γ 6= 0. α ∈ Z[ω] is a cubic residue modulo γ if the equation

x3 ≡ α (mod γ)

has a solution x in Z[ω].
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The goal of this section is to present effective methods for determining when an
Eisenstein integer is a cubic residue modulo γ. We start by considering the case where
γ is a prime. Let π be an Eisenstein prime with 1−ω - π. Recall from the first section
that this is equivalent to N(π) not being divisible by 3. We note that 1, ω and ω2

(= −1 − ω) cannot be congruent to each other modulo π (exercise). Earlier we saw
that the norm of any Eisenstein integer cannot be congruent to 2 modulo 3 and thus
N(π) ≡ 1 (mod 3). If π - α, we can make the factorization

αN(π)−1 − 1 =
(
e
N(π)−1

3 − 1
)(

e
N(π)−1

3 − ω
)(

e
N(π)−1

3 − ω2
)
.

By Fermat’s little theorem, π divides the left hand side. As π is prime, it must divide
at least one of the three factors on the right hand side. By the previous discussion, π
can only divide one of them. This makes the following definition valid.

Definition 7.2. For a prime π ∈ Z[ω] with N(π) 6= 3 and α ∈ Z[ω], define the cubic
residue symbol of α modulo π to be

(α
π

)
3

=

{
0, π | α
ωm, α(N(π)−1)/3 ≡ ωm (mod π)

Note the similarity between this definition and the result from elementary number
theory that (

a

p

)
≡ a

p−1
2 (mod p)

which is known as Euler’s criterion. See the beginning of chapter five in [3]. We are
interested in determining when an element is a cubic residue. The following proposition
shows that we are indeed on the right track.

Proposition 7.3. Let π be a prime, N(π) 6= 3. Then(α
π

)
3

= 1

if and only if α is a cubic residue modulo π.

Proof. We will use the fact that the invertible elements of Z[ω]/(π) form a cyclic group
(see Theorem 1 in chapter seven of [3]). In other words, there exists some γ such that
every Eisenstein integer modulo π is a power of γ. The equation

x3 ≡ α (mod π)

can thus be rewritten to γ3a ≡ γb (mod π) for some integers a, b. The equation has a
solution if and only if 3a ≡ b (mod N(π)− 1) and we know that gcd(3, N(π)− 1) = 3.
Hence the equation is solvable if and only if 3 | b. But this is equivalent to (α/π)3 =
1. �

Example 7.4. 1 + 6ω is a prime since N(1 + 6ω) = 31 is an integer prime. Consider
8− 11ω. We wish to determine whether x3 ≡ 8− 11ω (mod 1 + 6ω) has a solution. We
need to compute(

8− 11ω

1 + 6ω

)
3

≡ (8− 11ω)
31−1

3 ≡ (8− 11ω)10 (mod 1 + 6ω).

This computation is easily done using modular exponentiation and gives (8− 11ω/1 +
6ω)3 = 1. We conclude that x3 ≡ 8− 11ω (mod 1 + 6ω) is solvable.
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The following lemma is trivial but still important enough to state.

Lemma 7.5. Let π be a prime with N(π) 6= 3.

(i) (·/π)3 is multiplicative in the top argument i.e. for α, β ∈ Z[ω],(
αβ

π

)
3

=
(α
π

)
3

(
β

π

)
3

.

(ii) If α ≡ β (mod π), then (α
π

)
3

=

(
β

π

)
3

.

Proof. Exercise. �

Translating the problem of solving an equation into a function like (·/π)3 has many
advantages from a computational perspective. We actually have all the tools we need
to determine whether an equation

x3 ≡ α (mod γ)

has a solution. Indeed, factor γ into a product of primes and compute the cubic residue
symbol of α (using modular exponentiation) for all these primes. If all of these are one,
the equation has a solution, otherwise not. But our study does not end here. We want
to generalize the cubic residue symbol to the case where γ can be an element which is
not prime. This will allow us to compute the symbol effectively using cubic reciprocity.

Definition 7.6. Let α ∈ Z[ω] be a non-unit and assume 3 - N(α). Let β ∈ Z[ω] and
factor α = π1 · · ·πn into prime elements. Define the (generalized) cubic residue symbol
as (

β

α

)
3

=

n∏
i=1

(
β

πi

)
3

.

The generalized cubic residue symbol enjoys many nice properties. Some of these
are stated in the proposition below.

Proposition 7.7. Let α, β, λ, ρ ∈ Z[ω] with 3 - N(λ), N(ρ). The following hold:

(i) (α
λ

)
3
6= 0

if and only if α and λ are coprime.

(ii) (
αβ

λ

)
3

=
(α
λ

)
3

(
β

λ

)
3

.

(iii) If α ≡ β (mod λ), then (α
λ

)
3

=

(
β

λ

)
3

.

(iv) (
α

λρ

)
3

=
(α
λ

)
3

(
α

ρ

)
3
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(v) (
−1

λ

)
3

= 1.

Proof. See the exercises. �

Note that the proposition says nothing about the solvability of x3 ≡ α (mod λ). The
reason is simple. The connection between the cubic residue symbol and the solvability
of this equation breaks down in general when λ is not a prime. Later we will see an
example that illustrates this.

7.2 The law of cubic reciprocity

In this subsection we will state the law of cubic reciprocity, but we need a bit more
work before we can do so.

Definition 7.8. α ∈ Z[ω] is called primary if α ≡ 2 (mod 3).

α = a + bω ∈ Z[ω] with Nα 6= 3 is primary if and only if a ≡ 2 (mod 3) and
b ≡ 0 (mod 3). Recall that we have six associates of every element in Z[ω]. Hence the
notion of being primary is a way of avoiding the ambiguity caused by these associates.
In Z, we only have the two units, namely 1 and −1. In this case the ambiguity is
easily removed by simply requiring that the lower argument of the Legendre symbol
is non-negative. The notion of being primary is only useful if exactly one of the six
associates of α is primary. This turns out to be the case when 3 - N(α):

Proposition 7.9. Let α = a + bω ∈ Z[ω] and assume 3 - N(α). Exactly one of the
associates of α is primary.

Proof. Let us write down all the associates explicitly:

a+ bω, −b+ (a− b)ω, (b− a)− aω, −a− bω, b+ (b− a)ω, (a− b) + aω

We first show uniqueness. If a+ bω is primary, a ≡ 2 (mod 3) and b ≡ 0 (mod 3), from
which it easily follows by considering congruence classes that none of the associates
are primary. The proof of existence is a straightforward check. If a ≡ 0 (mod 3) and
b ≡ 1 (mod 3), the primary associate is (a − b) + aω. For a ≡ 0 (mod 3) and b ≡
2 (mod 3), the primary associate is (b−a)−aω. We let the reader check the remaining
four possible cases. Note that we cannot have the three cases with a+ b ≡ 0 (mod 3),
since the norm is divisible by 3 in those cases. �

The following technical lemma will be useful later.

Lemma 7.10. Any primary element λ in Z[ω] can be written as a product λ =
±λ1 · · ·λt with each λi a primary prime.

Proof. By unique factorization, factor λ = uπ1 · · ·πmq1 · · · qn with u ∈ Z[ω]× and
N(πi) ≡ 1 (mod 3), qi ≡ 2 (mod 3). For each i, let π′i = uiπi be the unique primary
associate of πi and v = u ·

∏
i ui. Then λ = vπ′1 · · ·π′mq1 · · · qn is a factorization into

primary primes. Reducing modulo 3, we obtain 2 ≡ v2m+n (mod 3) implying v = ±1
since a power of 2 is either 1 or -1 modulo 3. �

We are now ready to state the main theorem of this section.
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Theorem 7.11 (Law of cubic reciprocity). Let λ and ρ be relatively prime primary
elements in Z[ω] with N(λ), N(ρ) 6= 3 and N(λ) 6= N(ρ). Then(

λ

ρ

)
3

=
(ρ
λ

)
3
. (1)

For λ of the form λ = 3m− 1 + 3nω for integers m and n, we have the supplementary
law: (

1− ω
λ

)
3

= ω2m (2)

And for the units, we have:

(ω
λ

)
3

= ω
N(λ)−1

3 =


1, N(λ) ≡ 1 (mod 9)

ω, N(λ) ≡ 4 (mod 9)

ω2, N(λ) ≡ 7 (mod 9)

(3)

Proof. An elementary proof of this relies on a lot of machinery in the form of Gauss
and Jacobi sums. A full proof with all the necessary preliminaries can be found in
[5]. �

The following example illustrates how one (or more likely, a computer) would use
cubic reciprocity to compute the cubic residue symbol.

Example 7.12. Let α = −1165 + 2880ω and β = 134 − 429ω. One can check that
1 − ω does not divide β so that the cubic residue symbol (α/β)3 is well-defined. Let
us use cubic reciprocity to compute the symbol:

(
−1165 + 2880ω

134− 429ω

)
3

=

(
−227− 123ω

134− 429ω

)
3

=

(
227 + 123ω

134− 429ω

)
3

=

(
134− 429ω

227 + 123ω

)
3

=

(
−8 + 6ω

227 + 123ω

)
3

=

(
8− 6ω

227 + 123ω

)
3

=

(
227 + 123ω

8− 6ω

)
3

=

(
3− 5ω

8− 6ω

)
3

=

(
−ω

8− 6ω

)
3

(
8 + 3ω

8− 6ω

)
3

(N(8− 6ω) = 148 ≡ 4 (mod 9))

= ω

(
9ω

8− 6ω

)
3

= ω

(
ω

8− 6ω

)2

3

(
(1− ω)4

8− 6ω

)
3

= ωω2

(
1− ω
8− 6ω

)
3

= ω2 8+1
3 = ω6 = 1.

The example illustrates an important point. The above symbol was equal to 1, but
α is not a cubic residue modulo β. This can only happen when β is not a prime, and
in the above case, the factorization of β is given by β = ω(1−2ω)(5 + 2ω)(−51−26ω).
If α was a cubic residue modulo β, α would also be a cubic residue modulo each prime
factor of β. In this case however, as the reader may verify,(

α

1− 2ω

)
3

=

(
α

5 + 2ω

)
3

=

(
α

−51− 26ω

)
3

= ω.

7.3 Computing the cubic residue symbol

The fully generalized theorem of cubic reciprocity allows us to write an efficient algo-
rithm for computing the cubic residue character. In the following, for α = a+bω ∈ Z[ω],
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let α.a denote the value for a in a given iteration and likewise with α.b. primary(α)
denotes the unique primary associate of α.

Algorithm 6: Cubic residue symbol

1 Input: α, β ∈ Z[ω] with 1− ω - β
2 Output:

(
α
β

)
3

3 r ← 1
4 while (true) do
5 β ← primary(β)
6 α← α mod β
7

8 if α = 0 then
9 if N(β) 6= 1 then

10 return 0 // α and β have a common factor

11 else
12 return r

13

14 while 1− ω | α do
15 α← α/(1− ω)

16 r ← r · ω(2(β.a+1))/3 // supplementary law for 1− ω
17

18 u← α/primary(α)
19 α← primary(α) // supplementary law for the units

20 if u = ±ω then
21 if N(β) ≡ 4 mod 9 then
22 r ← r · ω
23 if N(β) ≡ 7 mod 9 then
24 r ← r · ω2

25 if u = ±ω2 then
26 if N(β) ≡ 4 mod 9 then
27 r ← r · ω2

28 if N(β) ≡ 7 mod 9 then
29 r ← r · ω

30 (α, β)← (β, α) // cubic reciprocity

7.4 Exercises

Exercise 7.4.1:
Show that none of 1, ω, ω2 can be congruent to each other modulo π when N(π) 6= 3.

Exercise 7.4.2:
Prove Lemma 7.5.

Exercise 7.4.3:
For α, π ∈ Z[ω] with π a prime and N(π) 6= 3, prove the following:
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(i) (α
π

)
3

=
(α
π

)2
3
.

(ii) (α
π

)
3

=

(
α

π

)
3

.

Exercise 7.4.4:
Prove Proposition 7.7 (most of the proofs consist of convincing one-self that they are

obvious).

Exercise 7.4.5:
Generalize Exercise 7.4.3 to a primary element λ with 3 - N(λ).

8 Applications

8.1 Cubic residues in the integers

We will use the theory developed in the previous section to determine when the equation

x3 ≡ a (mod p)

has a solution for a prime p. Not surprisingly, we call a a cubic residue modulo p if
there is a solution and a cubic nonresidue otherwise. The reader can verify that any a
is a cubic residue modulo 3, so assume p > 3. Then we have two cases, namely p ≡ 1
(mod 3) and p ≡ 2 (mod 3). We consider these two cases separately. In the following,
we assume that the reader is familiar with elementary abstract algebra.

Lemma 8.1. If p is a prime p ≡ 2 (mod 3), then x3 ≡ a (mod p) is always solvable.

Proof. If 3 | a, simply choose x = 0. Hence we may assume that 3 - a. The order of the
group Z/pZ× of non-zero units under multiplication is cyclic of order p− 1. As p ≡ 2
(mod 3), 3 does not divide the order of Z/pZ× so a3 is a generator of Z/pZ×. As a is
clearly a generator, the map a 7→ a3 is an automorphism and this clearly implies that
x3 ≡ a (mod p) has a solution x. �

So far we have not applied any results from the previous sections. They will come
into play when we consider the case p ≡ 1 (mod 3).

Lemma 8.2. If p is a prime p ≡ 1 (mod 3), then x3 ≡ a (mod p) is solvable if and
only if ( a

π

)
3

= 1

where p = ππ is the factorization of p into primes in Z[ω].

Proof. Recall from theorem 6.14 that Z[ω]/(π) has p elements. Hence Z[ω]/(π) is a
field with p elements. It follows that Z[ω]/(π) is isomorphic to Z/pZ and the claim
follows. �

Let us summarise our findings.

Theorem 8.3. For a prime p > 1, consider the equation x3 ≡ a (mod p). If p = 3 or
p ≡ 2 (mod 3), the equation always has a solution. If p ≡ 1 (mod 3), the equation is
solvable if and only if ( a

π

)
3

= 1.
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8.2 Primes of the form x2 + 27y2

A classical problem in number theory that has sparked many innovations in the field
is the question of when a prime p is of the form x2 + ny2 for integers x, y and n. We
can use cubic reciprocity to solve the problem for the case of n = 27.

Theorem 8.4. Let p be a prime. p is of the form x2 + 27y2 if and only if p ≡ 1 (mod
3) and 2 is a cubic residue modulo p.

Proof. Assume p = x2 + 27y2. Reducing modulo 3 gives p ≡ x2 (mod 3) and since
any square is congruent to 1 modulo 3, p ≡ 1 (mod 3) as desired. We now show
that 2 is a cubic residue modulo p using the theorem in the previous subsection. Let
π = x + 3

√
−3y, then p = ππ is the factorization of p in Z[ω]. We have to show that

(2/π)3 = 1. π and 2 are both primary primes (exercise) so by cubic reciprocity,(
2

π

)
3

=
(π

2

)
3

and by definition of the cubic residue symbol,(π
2

)
3
≡ π(N(2)−1)/3 ≡ π (mod 2).

As
√
−3 = 1 + 2ω, π = x + 3y + 6yω so π ≡ x + 3y ≡ x + y (mod 2). But as x and

y must have opposite parity, x + y ≡ 1 (mod 2), and the above symbol equals 1 as
desired. Conversely, suppose p ≡ 1 (mod 3) and that 2 is a cubic residue modulo p.
We can write p on the form p = ππ where π is a primary prime (see Lemma 7.10).
Hence π = a+ 3bω for some integers a and b. We have

4p = 4ππ = 4(a2 − 3ab+ 9b2) = (2a− b)2 + 27b2.

If b is even, we may divide both sides by 4 and obtain that p is of the desired form. We
have assumed (2/π) = 1 and by cubic reciprocity, (π/2) = 1. As before, π ≡ 1 (mod 2)
so that a+ 3bω ≡ 1 (mod 2). This implies that a is odd and b is even. This completes
the proof.

�

A whole book is dedicated to the study of primes of the form x2 + ny2, namely [1].
The above proof is also from that book (see Theorem 4.15).

Example 8.5. Consider p = 19. Is p of the form x2 + 27y2? We see that p ≡ 1 (mod
3). We also have p = ππ with π = 5 + 2ω. One can show that(

2

5 + 2ω

)
3

= ω 6= 1

and since 5 + 2ω is prime, 2 is not a cubic residue modulo 19. The above theorem says
that p is not of the desired form.

8.3 References and further reading

Some information on the Eisenstein integers can be found in [3]. For more information
on ring theory, consult [2]. As for cubic reciprocity, [3] is a good source. See also
the book [4] for a very thorough monologue on the subject that also includes other
reciprocity laws.
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8.4 Exercises

Exercise 8.4.1:
Prove that any integer a is a cubic residue modulo 3.

Exercise 8.4.2:
Is 31 of the form x2 + 27y2 for some integers x and y?

Exercise 8.4.3:
Is 79 of the form x2 + 27y2 for some integers x and y?
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A - Hints for the exercises

Exercise 2.4.4

Use Bezout’s theorem on both (α, γ) and (β, γ). Then substitute one of the equations
into the other and apply the corollary to Bezout’s theorem.

Exercise 4.4.5

Use Bezout’s theorem.

Exercise 4.4.7

(α) = (β) if and only if α divides β and β divides α.

Exercise 4.4.8

If M is a maximal ideal, M = (α) for some α (this holds for any ideal as was shown
earlier). If βγ ∈M and β /∈M , then (α) + (β) is an ideal strictly larger than M . Use
that M is a maximal ideal and Bezout’s theorem.

Exercise 4.4.9

You will need both quadratic reciprocity and the supplement for −1.

Exercise 5.5.1

Use induction.

Exercise 6.3.1

If [α]γ = [α′]γ and [β]γ = [β′]γ , use that

γ | β(α− α′) and γ | α′(β − β′).

Exercise 6.3.2

Use the proof of Theorem 6.12.

Exercise 6.3.3

Use the proof of Theorem 6.12.

Exercise 7.4.3

Show/use that ω = ω2.
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B - Solutions for the exercises

Exercise 1.4.1

α+ β = −4− 3ω, α− β = 10− 7ω, αβ = −11 + 51ω. N(α) = 49 and N(β) = 67.

Exercise 1.4.2

We have ω3 = 1 and so

ω(ω2 + ω + 1) = 1 + ω2 + ω

and since ω 6= 1, we must have ω2 + ω + 1 = 0. We can now verify the identity:

(a+ bω)(c+ dω) = ac+ adω + bcω + bdω2 = ac+ (ad+ bc)ω + bd(−1− ω)

= ac− bd+ (ad+ bc− bd)ω.

Exercise 1.4.3

Let β, γ ∈ Z[ω] satisfy αβ = 1 = αγ. Then

β = (αγ)β = γ(αβ) = γ.

This shows that the inverse is unique.

Exercise 1.4.4

Note that

ω = e
2πi
3 =

−1 + i
√

3

2

and so

ω =
−1− i

√
3

2
= −1− ω.

Hence
α = a+ bω = a+ b(−1− ω) = (a− b)− bω

which proves (1). We now verify (2):

αα = (a+ bω)(a− b− bω) = a(a− b)− abω + b(a− b)ω − b2ω2

= a2 − ab− abω + abω − b2ω − b2(−1− ω) = a2 − ab− b2 = N(α).

(3) follows immediately from (2).

Exercise 1.4.5

Using Proposition 1.7 (2), we have

N(αβ) = αβαβ = ααββ = N(α)N(β).
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Exercise 1.4.6

α = 1 · α so α ∼ α. This shows reflexivity. If α ∼ β, then α = uβ for a unit u ∈ Z[ω].
Then β = u−1α so β ∼ α. This proves symmetry. Now assume α ∼ β and β ∼ γ. Then
α = uβ and β = vγ for units u and v. Then α = uvγ, so α ∼ γ, showing transitivity.
We have

[2 + 3ω] = {2 + 3ω,−2− 3ω,−3− ω, 3 + ω,−1 + 2ω, 1− 2ω},

[4ω] = {4ω,−4ω,−4− 4ω, 4 + 4ω,−4, 4}
and

[1− ω] = {1− ω,−1 + ω, 1 + 2ω,−1− 2ω, 2 + ω,−2− ω}.

Exercise 1.4.7

1)

17 + 14ω

2 + 5ω
=

(17 + 14ω)(−3− 5ω)

19
=

19− 57ω

19
= 1− 3ω

so α divides 17 + 14ω.
2)

As N(4 + 7ω) = 37 and N(2 + 5ω) = 19 does not divide 37, α cannot divide 4 + 7ω.
3)

As N(9 + 5ω) = 61 and N(2 + 5ω) = 19 does not divide 61, α cannot divide 9 + 5ω.
4)

1− 7ω

2 + 5ω
=

(1− 7ω)(8 + 7ω)

19
=

57

19
= 3

so α divides 1− 7ω.

Exercise 2.4.1

We apply the Euclidean algorithm. Note that N(α) = 7 and N(β) = 16. So we apply
Euclidean division with β and α:

−4 = (−2− ω)(1− 2ω)− ω
1− 2ω = (3 + ω)(−ω)

so a greatest common divisor is δ = −ω. We now substitute back to find x, y,

−ω = −4 + (2 + ω)(1− 2ω).

Hence x = 2 + ω and y = 1.

Exercise 2.4.2

Using a method identical to the previous exercise, one can find the least common
divisor ω and x = 1, y = −2− ω.

Exercise 2.4.3

As α and β are coprime, there exist x, y ∈ Z[ω] such that αx+ βy = 1. Multiply by γ,
then αγx+ βγy = γ. As α and β divide γ, we can write γ = αρ1 = βρ2. Hence

αβρ2x+ αβρ1y = γ

and since αβ divides the left hand side, αβ divides γ as desired.
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Exercise 2.4.4

Assume that α and β are coprime to γ. Then

αx+ γy = 1 and βx′ + γy′ = 1

for some x, x′, y, y′ ∈ Z[ω]. Multiply the first equation by β on both sides and plug
this expression into the next equation to obtain

(αβx+ γβy)x′ + γy′ = 1

and expanding and rearranging the left hand side yields

αβxx′ + γ(y′ + βyx′) = 1

so by the corollary to Bezout’s theorem, αβ and γ are coprime. We prove the converse
by contraposition. Assume without loss of generality that α and γ share a divisor with
norm greater than one. Then αβ and γ share the same divisor, so α and β are not
coprime. This completes the exercise.

Exercise 4.4.1

N(3 + 7ω) = 37, N(1 + 4ω) = 13 and N(1− ω) = 3 are all integer primes. The claim
follows.

Exercise 4.4.2

An element of IJ is of the form αβ with α ∈ I and β ∈ J . As αβ ∈ I and αβ ∈ J , the
first inclusion holds. If α ∈ I ∩J , then α = α+0 ∈ I+J , proving the second inclusion.

Exercise 4.4.3

Let a, b ∈ I ∩ Z. Then a + b ∈ I and a + b ∈ Z so a + b ∈ I ∩ Z. Now let a ∈ Z and
b ∈ I ∩Z. As a ∈ Z[ω] in particular, ab ∈ I and since ab ∈ Z trivially, ab ∈ I ∩Z. This
shows that I ∩ Z is an ideal of Z.

Exercise 4.4.4

If I = Z[ω], I contains all units. Conversely, suppose I contains the unit u. Let
α ∈ Z[ω]. Then α = (αu−1)u ∈ I. As α was arbitrary, we must have I = Z[ω].

Exercise 4.4.5

Let γ ∈ (α) + (β). Then γ can be written as γ = αx + βy. As δ divides α and β, δ
divides γ so that γ = δρ for some ρ ∈ Z[ω]. This is equivalent to γ ∈ (δ). Conversely,
if γ ∈ (δ) then δ divides γ i.e. γ = δρ. Using Bezout’s theorem, write αx+βy = δ and
multiply by ρ to obtain

αxρ+ βyρ = δρ = γ

which shows that γ ∈ (α) + (β). We have proved inclusion both ways and hence the
proof is complete.

Exercise 4.4.6

(α) is a prime ideal if and only if whenever βγ ∈ (α) then β ∈ (α) or γ ∈ (α). The
latter is equivalent to β = αρ1 or γ = αρ2 for some ρ1, ρ2 ∈ Z[ω] i.e. that α divides
either β or γ. But this is exactly the definition of a prime element.
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Exercise 4.4.7

(α) = (β) if and only if α divides β and β divides α i.e. β = αγ and α = βρ for some
γ, ρ ∈ Z[ω]. Combining these yield α = αγρ. If α = 0 the claim is clear so assume not.
Then γρ = 1 i.e. they are both units and α and β are associates.

Exercise 4.4.8

We only prove the exercise for Z[ω]. The proof for Z is identical.
Let M be a maximal ideal. We need to show that M is a prime ideal. We know

that M = (α) for some α. Let βγ ∈ (α). Assume that β is not in (α). We need to
show that γ ∈ (α). The ideal (β) + (α) is strictly larger than (α). But (α) is maximal,
so we must have (β) + (α) = Z[ω]. Hence there exist x, y ∈ Z[ω] such that 1 = αx+βy
i.e. α and β are coprime. Multiplying by γ gives

γ = αγx+ βγy ∈ (α)

which proves that (α) must be prime.

Exercise 4.4.9

Let p ≡ 1 (mod 3). Using quadratic reciprocity, we have(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2 (−1)

p−1
2

3−1
2

(p
3

)
= 1

which proves the claim.

Exercise 4.4.10

1)
N(3− 7ω) = 79 which is prime, so 3− 7ω is a prime.

2)
N(3 + 5ω) = 19 which is prime, so 3 + 5ω is a prime.

3)
1− 4ω is not a prime. Indeed, N(1− 4ω) = 21 so 1− ω is a non-trivial factor.

4)
−3+5ω is not a prime. Indeed, N(−3+5ω) = 49 which is not a prime, and −3+5ω

is not conjugate to an integral prime.
5)

8− 2ω is not a prime since 2 is clearly a non-trivial factor.
6)

7ω is not a prime. Indeed, 7ω is associated to 7 and 7 ≡ 1 (mod 3).
7)
−5−5ω is prime since −5−5ω = (−1−ω)5 so −5−5ω is associated to 5 ≡ 2 (mod

3).
8)

1 + 36ω is not a prime. Indeed, N(1 + 36) = 1261 = 13 · 97 and 1 + 36ω is not
associated to an integral prime.
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Exercise 5.5.1

We prove the remaining part by induction. The case k = 1 is trivial. Let k > 1 and
assume that the statement is true for k − 1. Define α′ = α1 · · ·αk−1. As π | α1 · · ·αk,
by the case n = 2 proved in the lemma, we have π | α′ or π | αk. In the latter case
we are done. If π | α′, π divides at least one αi (i = 1, ..., k − 1) by the induction
hypothesis. This completes the proof.

Exercise 5.5.2

We have 1− ω = 1− (−1) + ω = 2 + ω. The associates of 1− ω besides 1− ω are

� −1(1− ω) = −1 + ω,

� ω(1− ω) = ω − ω2 = ω − (−1− ω) = 1 + 2ω,

� −ω(1− ω) = −1− 2ω,

� ω2(1− ω) = ω2 − 1 = −1− ω − 1 = −2− ω,

� −ω2(1− ω) = 2 + ω,

and so −ω2(1− ω) = 1− ω.

Exercise 5.5.3

As δ is a divisor of α and β, we have α = δρ and β = δγ for some ρ, γ ∈ Z[ω]. Hence
α = δρ and β = δγ. This shows that δ is a divisor of α and β. As N(δ) = N(δ), δ is a
divisor of maximal norm. Indeed, if this was not the case, δ could not have maximal
norm either.

Exercise 5.5.4

N(−9 + 4ω) = 133 = 7 · 19. Both of these primes are congruent to 1 modulo 3, so
we need to come up with an Eisenstein integer π such that N(π) = 7. Testing a few
values yields π = 1− 2ω. We know that either π or its conjugate is the correct choice.
We check

−9 + 4ω

1− 2ω
=

(−9 + 4ω)(3 + 2ω)

7
=
−35− 14ω

7
= −5− 2ω,

and so 1− 2ω is indeed a prime factor. The remaining prime factor must be −5− 2ω
(which indeed has norm 19). We conclude that

−9 + 4ω = (1− 2ω)(−5− 2ω)

is the prime factorization.

Exercise 5.5.5

We immediately see that 12− 8ω = 22(3− 2ω) and 3− 2ω has norm 19, so this is the
prime factorization.

Exercise 5.5.6

Using techniques similar to the ones in Exercise 5.5.4, the result is seen to be −16+ω =
(1 + ω)(1− ω)(3 + 2ω)(1 + 4ω).
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Exercise 5.5.7

Factoring yields α = −1(1 − ω)3 and β = (1 − ω)(3 + 2ω). Hence a least common
multiple is (1− ω)3(3 + 2ω) = 3− 12ω.

Exercise 5.5.8

Factoring yields α = (1− ω)2(4 + ω) and β is a prime different from the primes in the
factorization of α. Hence a least common multiple is αβ.

Exercise 6.3.1

Let α′, β′ ∈ Z[ω] satisfy [α]γ = [α′]γ and [β]γ = [β′]γ . We have γ | α−α′ and γ | β−β′.
Hence

γ | β(α− α′) = αβ − α′β

and
γ | α′(β − β′) = α′β − α′β′

so in particular
γ | αβ − α′β′

and thus [αβ]γ = [α′β′]γ . This shows that multiplication is independent of the choice
of representative and hence well-defined.

Exercise 6.3.2

ϕ is a bijection since it has a two sided inverse, namely ϕ−1([β]π) = [α]−1β [β]π. [α]−1π
exists since α and π are coprime.

Exercise 6.3.3

Note that 17 ≡ 2 (mod 3), so γ is a prime. From the proof of Theorem 6.12, a set of
representatives is given by

R = {a+ bω | 0 ≤ a, b < 17}.

Exercise 6.3.4

Note that N(γ) = 37 is a prime. From the proof of Theorem 6.12, a set of representa-
tives is given by

R = {0, 1, ..., 36}.

Exercise 6.3.5

As πe11 , ..., π
en
n are all factors of γ, α ≡ α′ (mod γ) implies that α ≡ α′ (mod πeii ) for

all i. Hence the map is well-defined.

Exercise 7.4.1

If 1 ≡ ω (mod π), then π | 1 − ω and in particular, N(π) | 3, impossible. If 1 ≡ ω2 ≡
−1 − ω (mod π) then π | 2 + ω and N(2 + ω) = 3 so again N(π) | 3 which is not
possible. The remaining cases are just as easy to check.
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Exercise 7.4.2

(i) By definition,(
αβ

π

)
3

≡ (αβ)(N(π)−1)/3 ≡ α(N(π)−1)/3β(N(π)−1)/3 ≡
(α
π

)
3

(
β

π

)
3

(mod π).

(ii) By definition,(α
π

)
3
≡ α(N(π)−1)/3 ≡ β(N(π)−1)/3 ≡

(
β

π

)
3

(mod π).

Exercise 7.4.3

(i) We see that ω = ω2, so the claim follows since (α/π)3 can only attain the values
1, ω and ω2.

(ii) By definition,(α
π

)
3
≡ αN(π)−1)/3 ≡ α(N(π)−1)/3 ≡ α(N(π)−1)/3 ≡

(
α

π

)
3

(mod π),

where we used that N(π) = N(π).

Exercise 7.4.4

(i) follows since (α/λ)3 = 0 if and only if a prime factor of λ divides α. (ii) and (iii)
follow immediately from the fact that they hold for primes. (iv) is immediate from the
definition. (v) follows from (−1)3 = −1.

Exercise 7.4.5

Replace π with λ, a primary element with 3 - N(λ), then the claim still holds. Indeed, it
follows directly from the multiplicativity of the cubic residue symbol and the definition
of the generalized cubic residue symbol.

Exercise 8.3.1

By Fermat’s little theorem (in the integers), a3 ≡ a (mod 3) so x = a is a solution to
the equation x3 ≡ a (mod 3).

Exercise 8.3.2

Yes, choose x = 2 and y = 1. Clearly, y = ±1 is the only choice that could possibly
work, and choosing x is obvious after choosing y.

We can also see this using Theorem 8.4. We have 31 ≡ 1 (mod 3). 31 = ππ for
π = 1 + 6ω, and (

2

1 + 6ω

)
3

= 1.

Exercise 8.3.3

We check the conditions of Theorem 8.4. 79 ≡ 1 (mod 3). We have 79 = ππ for
π = 3− 7ω, and (

2

3− 7ω

)
3

= ω 6= 1,

so 2 is not a cubic residue modulo 79 and hence 79 is not of the desired form.
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